

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Contributing to IVADO Medical Imaging

Table of contents

	Introduction

	Opening an issue

	Before Submitting a New Issue

	Submitting an Issue

	Contributing to IVADO Medical Imaging (Pull request)

	Opening a Branch

	Naming your Branch

	Developing

	Committing

	Submitting a Pull Request

	Versioning

Introduction

Thank you for contributing to IVADO Medical Imaging! Examples of contribution include:

	Reporting issues you encounter

	Providing new code or other content into the IVADO Medical Imaging repositories

	Contributing to the wiki or mailing list

Opening an issue

Issues (bugs, feature requests, or others) can be submitted on our project’s issue page. [https://github.com/neuropoly/ivado-medical-imaging/issues]

Before Submitting a New Issue

Please take a few seconds to search the issue database in case the
issue has already been raised.

When reporting an issue, make sure your installation has not been tempered
with (and if you can, update to the latest release, maybe the problem was
fixed).

Submitting an Issue

Issue Title

Try to have a self-descriptive, meaningful issue title, summarizing the
problem you see. Do not add the function name, because this will be
taken care of by the Issue Labels.

Examples:

	Crashes during image cropping

	Add a special mode for multi-class segmentation

Issue Body

Describe the issue and mention the IVADO Medical Imaging version and
OS that you are using.

If you experience an error, copy/paste the Terminal output (include your
syntax) and please follow these guidelines for clarity:

	If there is less than 10 lines of text, embed it directly in your
comment in github. Use “~~~” to format as code.

	If there is 10+ lines, either use an external website such as
pastebin [https://pastebin.com/] (copy/paste your text and include
the URL in your comment), or use collapsable Github markdown
capabilities [https://gist.github.com/ericclemmons/b146fe5da72ca1f706b2ef72a20ac39d#using-details-in-github].

Add useful information such as screenshots, etc.

If you submit a feature request, provide a usage scenario, imagining
how the feature would be used (ideally inputs, a sequence of commands,
and a desired outcome). Also provide references to any theoretical work
to help the reader better understand the feature.

Contributing to IVADO Medical Imaging (Pull request)

Contributions relating to content of the github repository can be
submitted through github pull requests (PR).

PR for bug fixes or new features should be based on the
[master]{.title-ref} branch.

The following github documentation may be useful:

	See Using Pull
Requests [https://help.github.com/articles/using-pull-requests] for
more information about Pull Requests.

	See Fork A Repo [http://help.github.com/forking/] for an
introduction to forking a repository.

	See Creating
branches [https://help.github.com/articles/creating-and-deleting-branches-within-your-repository/]
for an introduction on branching within GitHub.

Opening a Branch

If you are in the Official list of
contributors [https://github.com/neuropoly/ivado-medical-imaging/people?affiliation=ALL]
please open a branch inside SCT’s official
repository [https://github.com/neuropoly/ivado-medical-imaging]

Naming your Branch

Prefix the branch name with a personal identifier and a forward slash;
If the branch you are working on is in response to an issue, provide the
issue number; Add some text that make the branch name meaningful.

Examples:

	ol/100-fixup-lr-scheduler

	ab/loader-pep8

Developing

Conflicts

Make sure the PR changes are not in conflict with the documentation,
either documentation files ([/README.md]{.title-ref},
[/wiki/]{.title-ref}).

Testing

Please add tests, especially with new code. As of now, we have
integration tests, and unit tests (in [/testing/]{.title-ref}). They are
straightforward to augment, but we understand it’s the extra mile; it
would still be appreciated if you provide something lighter (eg. in the
commit messages or in the PR or issue text) that demonstrates that an
issue was fixed, or a feature is functional.

Consider that if you add test cases, they will ensure that your feature
-- which you probably care about -- does not stop working in the
future.

Documentation

If you are implementing a new feature, update the documentation to
describe the feature, and comment the code (things that are not
trivially understandable from the code) to improve its maintainability.

Make sure to cite any papers, algorithms or articles that can help
understand the implementation of the feature. If you are implementing an
algorithm described in a paper, add pointers to the section / steps.

Code style

Please review your changes for styling issues, clarity, according to the
PEP8 convention [https://www.python.org/dev/peps/pep-0008/]. Correct
any code style suggested by an analyzer on your changes.
PyCharm [https://www.jetbrains.com/help/pycharm/2016.1/code-inspection.html]
has a code analyser integrated or you can use
pyflakes [https://github.com/PyCQA/pyflakes].

Do not address your functional changes in the same commits as any
styling clean-up you may be doing on existing code.

Licensing

Ensure that you are the original author of your changes, and if that is
not the case, ensure that the borrowed/adapted code is compatible with
the MIT license.

Committing

Commit Titles

Provide a concise and self-descriptive title (avoid > 80 characters).
You may “scope” the title using the applicable command name(s), folder
or other “module” as a prefix. If a commit is responsible for fixing
an issue, post-fix the description with (fixes #ISSUE_NUMBER).

Examples:

testing: add testing function for validation metrics
loader: add timer
documentation: add slice_axis to the config files
model: add HeMIS network

Commit Sequences

Update your branch to be baseline on the latest master if new
developments were merged while you were developing. Please prefer
rebasing to merging, as explained in this
tutorial [https://coderwall.com/p/7aymfa/please-oh-please-use-git-pull-rebase].
Note that if you do rebases after review have started, they will be
cancelled, so at this point it may be more appropriate to do a pull.

Clean-up your commit sequence. If your are not familiar with git, this
good
tutorial [https://www.atlassian.com/git/tutorials/rewriting-history] on
the subject may help you.

Focus on committing 1 logical change at a time. See this
article [https://github.com/erlang/otp/wiki/writing-good-commit-messages]
on the subject.

Submitting a Pull Request

PR Title

The PR title is used to automatically generate the
Changelog [https://github.com/neuropoly/ivado-medical-imaging/blob/master/CHANGES]
for each new release, so please follow the following rules:

	Provide a concise and self-descriptive title (see Issue
Title).

	Do not include the applicable issue number in the title (do it in
the PR Body).

	Do not include the function name (use a PR Labels instead).

	If the PR is not ready for review, add “(WIP)” at the beginning of
the title.

PR Body

Describe what the PR is about, explain the approach and possible
drawbacks. Don’t hesitate to repeat some of the text from the related
issue (easier to read than having to click on the link).

If the PR fixes issue(s), indicate it after your introduction:
Fixes #XXXX, Fixes #YYYY. Note: it is important to respect the syntax
above so that the issue(s) will be closed upon merging the PR.

Continuous Integration

The PR can’t be merged if Travis
build [https://travis-ci.org/neuropoly/ivado-medical-imaging] hasn’t
succeeded. If you are familiar with it, consult the Travis test results
and check for possibility of allowed failures.

Reviewers

Any changes submitted for inclusion to the master branch will have to go
through a
review [https://help.github.com/articles/about-pull-request-reviews/].

Only request a review when you deem the PR as “good to go”. If the PR is
not ready for review, add “(WIP)” at the beginning of the title.

Github may suggest you to add particular reviewers to your PR. If
that’s the case and you don’t know better, add all of these
suggestions. The reviewers will be notified when you add them.

Versioning

Versioning uses the following convention: MAJOR.MINOR.PATCH, where:

PATCH version when there are backwards-compatible bug fixes or enhancements, without alteration to Python’s modules or data/binaries.
MINOR version when there are minor API changes or new functionality in a backwards-compatible manner, or when there are alteration to Python’s modules or data/binaries (which requires to re-run SCT installer for people working on the dev version),
MAJOR version when there are major incompatible API changes,
Beta releases follow the following convention:

MAJOR.MINOR.PATCH-beta.x (with x = 0, 1, 2, etc.)
Stable version is indicated in the file version.txt. For development version (on master), the version is “dev”.

 MIT License

Copyright (c) 2019 Polytechnique Montreal, Université de Montréal

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 [image: _images/badge.svg]Coverage Status [https://coveralls.io/github/neuropoly/ivado-medical-imaging?branch=master]
[image: _images/badge1.svg]

IVADO Medical Imaging

Comprehensive and open-source repository of deep learning methods for medical data segmentation.
Collaboration between MILA and NeuroPoly for the IVADO project on medical imaging.

	Installing

	Contributions

	Training

	Data

Contributions and features

Physic-informed network

We adapted the Feature-wise Linear Modulation (FiLM [https://arxiv.org/pdf/1709.07871.pdf]) approach to the segmentation task. FiLM enabled us to modulate CNNs features based on non-image metadata.

[image: _images/film_figure.png]Figure FiLM

Two-step training with class sampling

We implemented a class sampling scheme, coupled with a transfer learning strategy, in order to mitigate the issue of class imbalance, while adressing the limitations of classical under-sampling (risk of loss of information) or over-sampling (risk of overfitting) approaches. During a first training step, the CNN is trained on an equivalent proportion of positive and negative samples, negative samples being under-weighted dynamically at each epoch. During the second step, the CNN is fine-tuned on the realistic (i.e. class-imbalanced) dataset.

Mixup

Mixup [https://arxiv.org/pdf/1710.09412.pdf] is a data augmentation technique which trains on virtual samples, generated by linear interpolation of two random samples from the training set and the associated labels. The idea is to regularize the network by linearly interpolating between training samples while extending the training distribution.

[image: _images/mixup.png]Figure mixup

Data augmentation on lesion ground-truths

This data augmentation is motivated by the large inter-rater variability that we measured on our MS dataset. The raters indeed mainly disagreed on the boundaries of the lesions, which suggests that the lesion surrounding voxels may also include some lesion level information. A soft mask is constructed by morphological dilation of the binary segmentation (i.e. mask provided by expert), where expert-labeled voxels have one as value while the augmented voxels are assigned a soft value which depends on the distance to the core of the lesion. Thus, the prior knowledge about the subjective lesion borders is then leveraged to the network.

[image: _images/dilate-gt.png]Figure Data Augmentation on lesion ground truths

Network architectures

	U-net [https://arxiv.org/pdf/1505.04597.pdf]

	HeMIS [https://arxiv.org/abs/1607.05194]

Loss functions

	Dice Loss [https://arxiv.org/abs/1606.04797]

	Focal Loss [https://arxiv.org/pdf/1708.02002.pdf]

	Generalised Dice Loss [https://arxiv.org/pdf/1707.03237.pdf]

Installing

This project requires Python 3.6 and PyTorch >= 1.5.0. We recommend you work under a virtual environment:

virtualenv venv-ivadomed --python=python3.6
source venv-ivadomed/bin/activate

Option 1 : development version from Github

ivadomed is installed from Github and the requirements are installed using pip:

git clone https://github.com/neuropoly/ivado-medical-imaging.git
cd ivado-medical-imaging
pip install -e .

Option 2 : release from PyPI

ivadomed and its requirements are installed directly using pip :

pip install --upgrade pip
pip install ivadomed

Training

To train the network, use the ivadomed command-line tool that will be available on your path after installation, example below:

ivadomed config/config.json

where config.json is a configuration file. A description of each parameter is available in the wiki [https://github.com/neuropoly/ivado-medical-imaging/wiki/configuration-file].

Data

The working dataset are:

	derived from the Spinal Cord MRI Public Database [https://openneuro.org/datasets/ds001919].

	the spinal cord grey matter segmentation challenge dataset [https://www.sciencedirect.com/science/article/pii/S1053811917302185#s0050].

	private multi-center dataset (duke/sct_testing/large) for spinal cord and MS lesion segmentation task.

The data structure is compatible with BIDS [http://bids.neuroimaging.io/] and is exemplified below:

bids_folder/
└── dataset_description.json
└── participants.tsv
└── sub-amu01
 └── anat
 └── sub-amu01_T1w_reg.nii.gz --> Processed (i.e. different than in the original SpineGeneric database)
 └── sub-amu01_T1w_reg.json
 └── sub-amu01_T2w_reg.nii.gz --> Processed
 └── sub-amu01_T2w_reg.json
 └── sub-amu01_acq-MTon_MTS_reg.nii.gz --> Processed
 └── sub-amu01_acq-MTon_MTS_reg.json
 └── sub-amu01_acq-MToff_MTS_reg.nii.gz --> Processed
 └── sub-amu01_acq-MToff_MTS_reg.json
 └── sub-amu01_acq-T1w_MTS.nii.gz --> Unprocessed (i.e. same as in the original SpineGeneric database)
 └── sub-amu01_acq-T1w_MTS.json
 └── sub-amu01_T2star_reg.nii.gz --> Processed
 └── sub-amu01_T2star_reg.json
└── derivatives
 └── labels
 └── sub-amu01
 └── anat
 └── sub-amu01_T1w_seg.nii.gz --> Spinal cord segmentation

Contributors

List of contributors [https://github.com/neuropoly/ivado-medical-imaging/graphs/contributors]

Development Scripts

These scripts help the development and testing process.

Shortcut

. dev/activate

will add the scripts your $PATH so they can be run from anywhere in the project.
(this is a work in progress; add more)

Data preparation

These scripts prepare the data for training. It takes as input the Spinal Cord MRI Public Database [https://osf.io/76jkx/] and outputs BIDS-compatible datasets with segmentation labels for each subject. More specifically, for each subject, the segmentation is run in one volume (T1w), then all volumes are registered to the T1w volume so that all volumes are in the same voxel space and the unique segmentation can be used across volumes.

Dependencies

In its current state, this pipeline uses SCT development version [https://github.com/neuropoly/spinalcordtoolbox#install-from-github-development]. Once the pipeline is finalized, a stable version of SCT will be associated with this pipeline and indicated here. For now, please use the latest development version of SCT.

How to run

Activate environment

See README

source PATH_TO_YOUR_VENV/venv-ivadomed/bin/activate

Initial steps, check for folder integrity

	Copy the file parameters_template.sh and rename it as parameters.sh.

	Edit the file parameters.sh and modify the variables according to your needs.

	Make sure input files are present:

sct_run_batch parameters.sh check_input_files.sh

Run first processing

Loop across subjects and run full processing:

sct_run_batch parameters.sh prepare_data.sh

Perform QC

Spinal cord segmentations

	Open qc/index.html

	Search only for “deepseg” QC entries (use “search” field)

	Take a screenshot of the browser when you spot a problem (wait for the segmentation to appear before taking the screenshot)

	If the data are of very bad quality, also take a screenshot (this time, wait for the segmentation to disappear)

	Copy all screenshots under qc_feedback/

Registration of MT scans

	Search for “register_multimodal”

	Take a screenshot of the browser when you spot a problem (wait for the segmentation to appear before taking the screenshot)

	If the data are of very bad quality, also take a screenshot (this time, wait for the segmentation to disappear)

	Copy all screenshots under qc_feedback/

Manually correct the segmentations

Check the following files under e.g. result/sub-balgrist01/anat/tmp:

Image	Segmentation
:—	:—
sub-XX_acq-T1w_MTS_crop_r.nii.gz	sub-XX_acq-T1w_MTS_crop_r_seg.nii.gz
sub-XX_T1w_reg.nii.gz	sub-XX_T1w_reg_seg.nii.gz
sub-XX_T2w_reg.nii.gz	sub-XX_T2w_reg_seg.nii.gz
sub-XX_T2star_mean_reg.nii.gz	sub-XX_T2star_mean_reg_seg.nii.gz

	Open the segmentation with fsleyes

	Manually correct it:

	If the segmentation is leaking, remove the leak (use CMD+F to switch the overlay on/off)

	If the segmentation exists in one slice but only consists of a few pixels, because the image quality is bad or because it is no more covering the cord (e.g. brainstem), remove all pixels in the current slice (better to have no segmentation than partial segmentation).

	If the spinal cord is only partially visible (this can happen in T2star scans due to the registration), zero all pixels in the slice.

	Save with suffix -manual.

	Move to a folder named seg_manual/$FILENAME. E.g.: spineGeneric_201903031331/seg_manual/sub-amu01_acq-T1w_MTS_crop_r_seg-manual.nii.gz

Exclude images

If some images are of unacceptable quality, they could be excluded from the final output dataset. List images to exclude in parameters.sh using the field TO_EXCLUDE. Note: Only write the file prefix (see parameters_template.sh for examples).

Re-run processing (using manually-corrected segmentations)

Make sure to update the field PATH_SEGMANUAL in the file parameters.sh, then re-run:

sct_run_batch parameters.sh prepare_data.sh

Copy files, final QC

Copy final files to anat/, copy json sidecars, move segmentations to derivatives/ and generate another QC:

sct_run_batch parameters.sh final_qc.sh

	Open the new QC: qc2/index.html

	Make sure that:

	the final segmentation properly overlays on each contrast,

	there is no missing slice (can happen for t2s data),

	each contrast has sufficient image quality.

	If you spot any problem, take a screenshot of the browser and copy screenshots under qc2_feedback/

Clean temporary files

Once QC and manual correction is done, remove tmp/ folder:

sct_run_batch parameters.sh delete_tmp_files.sh

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/dilate-gt.png
o —— L9 porwswSay

_images/film_figure.png
Image properties .
(e.g. contrast type) —> FiLM Generator (MLP)

Input
Metadata
(v, B) (v, B)
[9))
> >
© —_ @© —
- [9) - o
o > ol >
SH2IE| |52 8
= [0) = jo) -
slellzs||3]|2]]=
g T 9 T
c [
o) o]
(@] O
Output
Segmentation
Convolutional Neural Network
modulated by metadata

FiLM(x)=y(z) Ox+f(z)

x: Feature map z: conditioning input Y, B: FiLM parameters

FiLM: Visual Reasoning with a General Conditioning Laver. Perez et al. 2018

_images/mixup.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up.png

_static/up-pressed.png

