

ivadomed

Note

This website is under construction.

ivadomed is an integrated framework for medical image analysis with deep
learning. The name is a portmanteau between IVADO (The Institute for data
valorization [https://ivado.ca/en/]) and Medical.

The purpose of the ivadomed project is to:

	Provide researchers with an open-source framework for training deep learning models for applications in medical imaging;

	Provide ready-to-use Models trained on multi-center data.

Overview

	Comparison with other projects

	Technical features

Getting started

	Installation

	Getting started

	Configuration File

	Data

	Models

	Scripts

Tutorials

	One-class segmentation with 2D U-Net

Developer section

	Contributing to ivadomed

	API Reference

Contributors

[image: Alternative text]
[image: Alternative text]
This project results from a collaboration between the
NeuroPoly Lab [https://www.neuro.polymtl.ca] and Mila [https://mila.quebec/en/].

A list of contributors is available here [https://github.com/neuropoly/ivadomed/graphs/contributors].

Sponsors

[image: Alternative text]
If you wish to sponsor this project, please consider donating [https://github.com/sponsors/neuropoly].

License

MIT License

Copyright (c) 2019 Polytechnique Montreal, Université de Montréal

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Comparison with other projects

We acknowledge the existence of projects with similar purposes. The table below compares some features across some
of the existing projects. This table was mostly based on the existing documentation for each project. We
understand that the field is rapidly evolving, and that this table might reflect the reality. If you notice
inconsistencies, please let us know by opening an issue [https://github.com/ivadomed/ivadomed/issues].

comparison

	Name

	Website / Documentation

	BIDS(*)

	Framework

	Tasks

	Data dimension

	Multichannel / Multilabel

	Uncertainty

	Transfer Learning

	Pre-processing tools

	Post-processing tools

	User case examples

	Multi-GPU data parallelism

	Automatic Model evaluation

	Input region of interest

	Missing modality

	Model performance comparison

	Automatic hyperparameter optimisation

	Pre-trained Models

	ivadomed

	https://ivadomed.org/en/latest/

	Yes

	PyTorch

	Segmentation, Detection

	2D, 3D

	Both

	Epistemic, Aleatoric

	Yes

	Yes

	Yes

	Yes

	No

	Yes

	Yes (image)

	Yes

	Yes

	Yes

	Yes

	monai

	https://monai.io/

	No

	PyTorch

	Segmentation, Classification

	2D, 3D

	Both

	None

	No

	Yes

	No

	Yes

	Yes

	Yes

	Yes (coordinates)

	No

	No

	No

	Yes

	delira

	https://delira.readthedocs.io/en/master/

	No

	PyTorch and TensorFlow

	Classification, Generation, Segmentation

	2D, 3D

	None

	None

	Yes

	No

	No

	Yes

	Yes

	No

	No

	No

	No

	No

	No

	MIC-DKFZ

	https://github.com/MIC-DKFZ/medicaldetectiontoolkit

	No

	Torch

	Detection

	2D, 3D

	None

	None

	No

	No

	No

	No

	No

	Yes

	Yes (image)

	No

	No

	No

	No

	ANTsPyNet

	https://antsx.github.io/ANTsPyNet/docs/build/html/index.html

	No

	TensorFlow/Keras

	Classification, segmentation,clustering, GAN, registration, super-resolution, autoencoder

	2D,3 D

	Multilabel

	None

	No

	No

	No

	Yes

	No

	No

	No

	No

	No

	No

	No

	DLTK

	https://dltk.github.io/

	No

	Tensorflow

	Classification, segmentation, GAN, registration, super-resolution, autoencoder

	3D

	Multilabel

	None

	Yes

	No

	No

	Yes

	No

	No

	No

	No

	No

	No

	No

	MIScnn

	https://github.com/frankkramer-lab/MIScnn

	No

	Tensorflow/Keras

	Segmentation

	2D, 3D

	Multilabel

	None

	No

	Yes

	Yes

	No

	Yes

	Yes

	No

	No

	No

	No

	No

	niftytorch

	https://niftytorch.github.io/doc/

	Yes

	Torch

	Classificication /segmentation

	3D

	None

	None

	No

	No

	No

	Yes

	Yes

	No

	Yes

	No

	No

	Yes

	No

(*): Brain Imaging Data Structure [https://bids.neuroimaging.io/]

Technical features

Physics-informed network

CNNs can be modulated, at each layer, using the Feature-wise Linear
Modulation (FiLM) [https://arxiv.org/abs/1709.07871] technique.
FiLM permits to add priors during training/inference based on the
imaging physics (e.g. acquisition parameters), thereby improving the
performance of the output segmentations.

[image: Figure FiLM]
Figure FiLM

Uncertainty measures

At inference time, uncertainty can be estimated via two ways: -
model-based uncertainty (epistemic) based on Monte Carlo
Dropout [https://arxiv.org/abs/1506.02142]. - image-based uncertainty
(aleatoric) based on test-time
augmentation [https://doi.org/10.1016/j.neucom.2019.01.103].

From the Monte Carlo samples, different measures of uncertainty can be
derived: - voxel-wise entropy - structure-wise intersection over union -
structure-wise coefficient of variation - structure-wise averaged
voxel-wise uncertainty within the structure

These measures can be used to perform some
post-processing [https://arxiv.org/abs/1808.01200] based on the
uncertainty measures.

[image: Figure Uncertainty]
Figure Uncertainty

Two-step training scheme with class sampling

Class sampling, coupled with a transfer learning strategy, can mitigate
class imbalance issues, while addressing the limitations of classical
under-sampling (risk of loss of information) or over-sampling (risk of
overfitting) approaches.

During a first training step, the CNN is trained on an equivalent
proportion of positive and negative samples, negative samples being
under-weighted dynamically at each epoch. During the second step, the
CNN is fine-tuned on the realistic (i.e. class-imbalanced) dataset.

Mixup

Mixup [https://arxiv.org/abs/1710.09412] is a data augmentation
technique, wherein training is performed on samples that are generated
by combining two random samples from the training set and from the
associated labels. The motivation is to regularize the network while
extending the training distribution.

[image: Figure mixup]
Figure mixup

Data augmentation on lesion labels

This data augmentation is motivated by the large inter-rater variability
that is common in medical image segmentation tasks. Typically, raters
disagree on the boundaries of pathologies (e.g., tumors, lesions). A
soft mask is constructed by morphological dilation of the binary
segmentation (i.e. mask provided by expert), where expert-labeled voxels
have one as value while the augmented voxels are assigned a soft value
which depends on the distance to the core of the lesion. Thus, the prior
knowledge about the subjective lesion borders is then leveraged to the
network.

[image: Figure Data Augmentation on lesion ground truths]
Figure Data Augmentation on lesion ground truths

Network architectures

	UNet [https://arxiv.org/abs/1505.04597], with control of the
network depth.

	HeMIS-UNet: integrates the
HeMIS [https://arxiv.org/abs/1607.05194] strategy to deal with
missing modalities within a UNet training scheme.

	FiLMed-UNet, based on FiLM [https://arxiv.org/abs/1709.07871]
strategy adapted to the segmentation
task.

	Countception: modified implementation of Countception [https://arxiv.org/abs/1703.08710] for keypoints detection.

Loss functions

	Dice Loss [https://arxiv.org/abs/1606.04797]. Also adapted for
multi-label segmentation tasks, by averaging the loss for each class.

	Focal Loss [https://arxiv.org/abs/1708.02002].

	Focal-Dice Loss: Linear combination of the Focal and Dice losses.

	Generalized Dice Loss [https://arxiv.org/abs/1707.03237]. An
additional feature compared to the published reference, is that the
background volume can be weighted by the inverse of its area, which
could be of interest in high class imbalance scenarios.

	Adaptive wing loss [https://arxiv.org/abs/1904.07399]. Loss function used to detect key points with Gaussian representation of the target.

	Loss Combination: Linear combination of any other implemented losses.

Installation

ivadomed requires Python >= 3.6 and PyTorch >= 1.5.0. We recommend
working under a virtual environment, which could be set as follows:

virtualenv venv-ivadomed --python=python3.6
source venv-ivadomed/bin/activate

Install from release (recommended)

Install ivadomed and its requirements from
Pypi [https://pypi.org/project/ivadomed/]:

pip install --upgrade pip
pip install ivadomed

Install from source

Bleeding-edge developments are available on the project’s master branch
on Github. Installation procedure is the following:

git clone https://github.com/neuropoly/ivadomed.git
cd ivadomed
pip install -e .

Getting started

New model can be generated using the command-line tool from the
terminal:

ivadomed ivadomed/config/config.json

where config.json is a configuration file, which parameters are
described in the Configuration File.

To fully benefit from all the features of ivadomed, please see the
tutorials:Tutorials.

Configuration File

General parameters

command

Run the specified command. Choices: "train", "test", "eval",
to train, test and evaluate a model respectively.

gpu

Integer. ID of the GPU to use.

log_directory

Folder name that will contain the output files (e.g., trained model,
predictions, results).

model_name

Folder name containing the trained model (ONNX format) and its configuration
file, located within "log_directory/", eg
"log_directory/seg_gm_t2star/seg_gm_t2star.onnx" and
"log_directory/seg_gm_t2star/seg_gm_t2star.json", respectively. When
possible, the folder name will follow the following convention:
task_(animal)_region_(contrast) with

task = {seg, label, find}
animal = {human, dog, cat, rat, mouse, ...}
region = {sc, gm, csf, brainstem, ...}
contrast = {t1, t2, t2star, dwi, ...}

debugging

Bool. Extended verbosity and intermediate outputs.

Loader parameters

bids_path

String. Path of the BIDS folder.

target_suffix

List. Suffix list of the derivative file containing the ground-truth of
interest (e.g. ["_seg-manual", "_lesion-manual"]). The length of
this list controls the number of output channels of the model (i.e.
out_channel). If the list has a length greater than 1, then a
multi-class model will be trained.

contrasts

	train_validation: List. List of image contrasts (e.g. T1w,
T2w) loaded for the training and validation. If multichannel
is true, this list represents the different channels of the input
tensors (i.e. its length equals model’s in_channel). Otherwise,
the contrasts are mixed and the model has only one input channel
(i.e. model’s in_channel=1).

	test: List. List of image contrasts (e.g. T1w, T2w)
loaded in the testing dataset. Same comment than for
train_validation regarding multichannel.

	balance: Dict. Enables to weight the importance of specific
channels (or contrasts) in the dataset: e.g. {"T1w": 0.1} means
that only 10% of the available T1w images will be included into
the training/validation/test set. Please set multichannel to
false if you are using this parameter.

multichannel

Bool. Indicated if more than a contrast (e.g. T1w and T2w) is
used by the model. See details in both train_validation and test
for the contrasts that are input.

slice_axis

Choice between "sagittal", "coronal", and "axial". Sets the
slice orientation for on which the model will be used.

slice_filter

Dict. Discard a slice from the dataset if it meets a condition, see
below. - filter_empty_input: Bool. Discard slices where all voxel
intensities are zeros. - filter_empty_mask: Bool. Discard slices
where all voxel labels are zeros.

roi

Dict. of parameters about the region of interest - suffix: String.
Suffix of the derivative file containing the ROI used to crop (e.g.
"_seg-manual") with ROICrop as transform. Please use null if
you do not want to use an ROI to crop. - slice_filter_roi: int. If
the ROI mask contains less than slice_filter_roi non-zero voxels,
the slice will be discarded from the dataset. This feature helps with
noisy labels, e.g., if a slice contains only 2-3 labeled voxels, we do
not want to use these labels to crop the image. This parameter is only
considered when using "ROICrop".

soft_gt

Bool. Indicates if a soft mask will be used as ground-truth to train
and / or evaluate a model. In particular, the masks are not binarized
after interpolations implied by preprocessing or data-augmentation operations.

Split dataset

fname_split

String. File name of the log
(joblib [https://joblib.readthedocs.io/en/latest/]) that contains
the list of training/validation/testing subjects. This file can later be
used to re-train a model using the same data splitting scheme. If
null, a new splitting scheme is performed.

random_seed

Int. Seed used by the random number generator to split the dataset
between training/validation/testing. The use of the same seed ensures
the same split between the sub-datasets, which is useful to reproduce
results.

method

{"per_patient", "per_center"}. "per_patient": all subjects are
shuffled, then split between train/validation/test according to
"train_fraction" and "test_fraction", regardless their
institution. "per_center": all subjects are split so as not to mix
institutions between the train/validation/test sets according to
"train_fraction" and "center_test". The latter option enables to
ensure the model is working across domains (institutions). Note: the
institution information is contained within the institution_id
column in the participants.tsv file.

train_fraction

Float. Between 0 and 1 representing the fraction of the dataset
used as training set.

test_fraction

Float. Between 0 and 1 representing the fraction of the dataset
used as test set. This parameter is only used if the method is
"per_patient".

center_test

List of strings. Each string corresponds to an institution/center to
only include in the testing dataset (not validation). This parameter is
only used if the method is "per_center". If used, the file
bids_dataset/participants.tsv needs to contain a column
institution_id, which associates a subject with an
institution/center.

Training parameters

batch_size

Strictly positive integer.

loss

	name: Name of the loss function class. See ivadomed.losses

	Other parameters that could be needed in the Loss function
definition: see attributes of the Loss function of interest (e.g.
"gamma": 0.5 for FocalLoss).

training_time

	num_epochs: Strictly positive integer.

	early_stopping_epsilon: Float. If the validation loss difference
during one epoch (i.e.
abs(validation_loss[n] - validation_loss[n-1] where n is the
current epoch) is inferior to this epsilon for
early_stopping_patience consecutive epochs, then training stops.

	early_stopping_patience: Strictly positive integer. Number of
epochs after which the training is stopped if the validation loss
improvement is smaller than early_stopping_epsilon.

scheduler

	initial_lr: Float. Initial learning rate.

	scheduler_lr:

	name: Choice between: "CosineAnnealingLR",
"CosineAnnealingWarmRestarts" and "CyclicLR". Please find
documentation here [https://pytorch.org/docs/stable/optim.html].

	Other parameters that are needed for the scheduler of interest (e.g.
"base_lr": 1e-5, "max_lr": 1e-2 for "CosineAnnealingLR").

balance_samples

Bool. Balance positive and negative labels in both the training and the
validation datasets.

mixup_alpha

Float. Alpha parameter of the Beta distribution, see original paper on
the Mixup technique [https://arxiv.org/abs/1710.09412].

transfer_learning

	retrain_model: Filename of the pretrained model
(path/to/pretrained-model). If null, no transfer learning is
performed and the network is trained from scratch.

	retrain_fraction: Float between 0. and 1. Controls the fraction
of the pre-trained model that will be fine-tuned. For instance, if
set to 0.5, the second half of the model will be fine-tuned while the
first layers will be frozen.

Architecture

Architectures for both segmentation and classification are available and
described in the Models section. If the selected
architecture is listed in the
loader file, a
classification (not segmentation) task is run. In the case of a
classification task, the ground truth will correspond to a single label
value extracted from target, instead being an array (the latter
being used for the segmentation task).

default_model (Mandatory)

Dict. Define the default model (Unet) and mandatory parameters that
are common to all available architectures (listed in the
Models section). For more specific models (see below),
the default parameters are merged with the parameters that are specific
to the tailored model. - name: Unet (default) -
dropout_rate: Float (e.g. 0.4). - batch_norm_momentum: Float
(e.g. 0.1). - depth: Strictly positive integer. Number of
down-sampling operations.

FiLMedUnet (Optional)

	applied: Bool. Set to true to use this model.

	metadata: String. Choice between "mri_params" or
"contrast". "mri_params": Vectors of
[FlipAngle, EchoTime, RepetitionTime, Manufacturer] (defined in
the json of each image) are input to the FiLM generator.
"contrast": Image contrasts (according to
config/contrast_dct.json) are input to the FiLM generator.

HeMISUnet (Optional)

	applied: Bool. Set to true to use this model.

	missing_probability: Float between 0 and 1. Initial probability
of missing image contrasts as model’s input (e.g. 0.25 results in a
quarter of the image contrasts, i.e. channels, that will not been
sent to the model for training).

	missing_probability_growth: Float. Controls missing probability
growth at each epoch: at each epoch, the missing_probability is
modified with the exponent missing_probability_growth.

UNet3D (Optional)

	length_3D: (Int, Int, Int). Size of the 3D patches used as
model’s input tensors.

	stride_3D: [Int, Int, Int]. Voxels’ shift over the input matrix
to create patches. Ex: Stride of [1, 2, 3] will cause a patch
translation of 1 voxel in the 1st dimension, 2 voxels in the 2nd
dimension and 3 voxels in the 3rd dimension at every iteration until
the whole input matrix is covered.

	attention_unet: Bool. Use attention gates in the Unet’s decoder.

Testing parameters

	binarize_prediction: Bool. Binarize output predictions using a
threshold of 0.5. If false, output predictions are float between
0 and 1.

uncertainty

Uncertainty computation is performed if n_it>0 and at least
epistemic or aleatoric is true. Note: both epistemic and
aleatoric can be true. - epistemic: Bool. Model-based
uncertainty with Monte Carlo
Dropout [https://arxiv.org/abs/1506.02142]. - aleatoric: Bool.
Image-based uncertainty with test-time
augmentation [https://doi.org/10.1016/j.neucom.2019.01.103]. -
n_it: Integer. Number of Monte Carlo iterations. Set to 0 for no
uncertainty computation.

Cascaded Architecture Features

object_detection_params (Optional)

	object_detection_path: String. Path to object detection model and
the configuration file. The folder, configuration file, and model need
to have the same name (e.g. findcord_tumor/,
findcord_tumor/findcord_tumor.json, and
findcord_tumor/findcord_tumor.onnx, respectively).
The model’s prediction will be used to generate bounding boxes.

	safety_factor: List. List of length 3 containing the factors to
multiply each dimension of the bounding box. Ex: If the original
bounding box has a size of 10x20x30 with a safety factor of [1.5,
1.5, 1.5], the final dimensions of the bounding box will be 15x30x45
with an unchanged center.

Transformations

Transformations applied during data augmentation. Transformations are
sorted in the order they are applied to the image samples. For each
transformation, the following parameters are customizable: -
applied_to: list betweem "im", "gt", "roi". If not specified,
then the transformation is applied to all loaded samples. Otherwise,
only applied to the specified types: eg ["gt"] implies that this
transformation is only applied to the ground-truth data. -
dataset_type: list between "training", "validation", "testing".
If not specified, then the transformation is applied to the three
sub-datasets. Otherwise, only applied to the specified subdatasets: eg
["testing"] implies that this transformation is only applied to the
testing sub-dataset.

Available transformations:

	NumpyToTensor

	CenterCrop2D (parameters: size)

	ROICrop2D (parameters: size)

	NormalizeInstance

	RandomAffine (parameters: degrees (Positive integer),
translate (List of floats between 0. and 1.), scale (List of
floats between 0. and 1.))

	RandomShiftIntensity (parameters: shift_range)

	ElasticTransform (parameters: alpha_range, sigma_range,
p)

	Resample (parameters: wspace, hspace, dspace)

	AdditionGaussianNoise (parameters: mean, std)

	DilateGT (parameters: dilation_factor) Float. Controls the
number of iterations of ground-truth dilation depending on the size
of each individual lesion, data augmentation of the training set. Use
0 to disable.

	HistogramClipping (parameters: min_percentile,
max_percentile)

	Clage (parameters: clip_limit, kernel_size)

	RandomReverse

Examples

Examples of configuration files: config_config.json.

In particular:

	config_classification.json. Is dedicated to classification task.

	config_sctTesting.json. Is a user case of 2D segmentation using a U-Net model.

	config_spineGeHemis.json. Shows how to use the HeMIS-UNet.

	config_tumorSeg.json. Runs a 3D segmentation using a 3D UNet.

Data

Without data, nothing can be done. To get you started, we recommend you
download the Spinal Cord MRI Public
Database [https://openneuro.org/datasets/ds001919]. This dataset is
composed of 248+ subjects from different imaging centers and includes
original images in NIfTI format as well as manual segmentations and
labels. The data are organized according to the
BIDS [http://bids.neuroimaging.io/] convention, to be fully
compatible with ivadomed loader:

dataset/
└── dataset_description.json
└── participants.tsv
└── sub-01
 └── anat
 └── sub-siteX01_T1w_reg.nii.gz
 └── sub-siteX01_T1w_reg.json
 └── sub-siteX01_T2w_reg.nii.gz
 └── sub-siteX01_T2w_reg.json
 └── sub-siteX01_acq-MTon_MTS_reg.nii.gz
 └── sub-siteX01_acq-MTon_MTS_reg.json
 └── sub-siteX01_acq-MToff_MTS_reg.nii.gz
 └── sub-siteX01_acq-MToff_MTS_reg.json
 └── sub-siteX01_acq-T1w_MTS.nii.gz
 └── sub-siteX01_acq-T1w_MTS.json
 └── sub-siteX01_T2star_reg.nii.gz
 └── sub-siteX01_T2star_reg.json
└── derivatives
 └── labels
 └── sub-siteX01
 └── anat
 └── sub-siteX01_T1w_seg.nii.gz

Note

participants.tsv should, at least, include a column participant_id, which is used when loading the dataset.

Warning

TODO: Update openneuro site to include derivatives

Models

Unet

	
class Unet(in_channel=1, out_channel=1, depth=3, drop_rate=0.4, bn_momentum=0.1, **kwargs)

	Bases: torch.nn.modules.module.Module

A reference U-Net model.

See also

Ronneberger, O., et al (2015). U-Net: Convolutional
Networks for Biomedical Image Segmentation
ArXiv link: https://arxiv.org/abs/1505.04597

	Parameters

	
	in_channel (int) – Number of channels in the input image.

	out_channel (int) – Number of channels in the output image.

	depth (int) – Number of down convolutions minus bottom down convolution.

	drop_rate (float) – Probability of dropout.

	bn_momentum (float) – Batch normalization momentum.

	**kwargs –

	Attributes

	
	encoder (Encoder) – U-Net encoder.

	decoder (Decoder) – U-net decoder.

	
__init__(in_channel=1, out_channel=1, depth=3, drop_rate=0.4, bn_momentum=0.1, **kwargs)

	Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
forward(x)

	Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

FiLMedUnet

	
class FiLMedUnet(in_channel=1, out_channel=1, depth=3, drop_rate=0.4, bn_momentum=0.1, n_metadata=None, film_layers=None, **kwargs)

	Bases: ivadomed.models.Unet

U-Net network containing FiLM layers to condition the model with another data type (i.e. not an image).

	Parameters

	
	n_channel (int) – Number of channels in the input image.

	out_channel (int) – Number of channels in the output image.

	depth (int) – Number of down convolutions minus bottom down convolution.

	drop_rate (float) – Probability of dropout.

	bn_momentum (float) – Batch normalization momentum.

	n_metadata (dict) – FiLM metadata see ivadomed.loader.film for more details.

	film_layers (list) – List of 0 or 1 indicating on which layer FiLM is applied.

	**kwargs –

	Attributes

	
	encoder (Encoder) – U-Net encoder.

	decoder (Decoder) – U-net decoder.

	
__init__(in_channel=1, out_channel=1, depth=3, drop_rate=0.4, bn_momentum=0.1, n_metadata=None, film_layers=None, **kwargs)

	Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
forward(x, context=None)

	Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

HeMISUnet

	
class HeMISUnet(contrasts, out_channel=1, depth=3, drop_rate=0.4, bn_momentum=0.1, **kwargs)

	Bases: torch.nn.modules.module.Module

	A U-Net model inspired by HeMIS to deal with missing contrasts.

	
	It has as many encoders as contrasts but only one decoder.

	Skip connections are the concatenations of the means and var of all encoders skip connections.

Param:
contrasts: list of all the possible contrasts. [‘T1’, ‘T2’, ‘T2S’, ‘F’]

See also

Havaei, M., Guizard, N., Chapados, N., Bengio, Y.:
Hemis: Hetero-modal image segmentation.
ArXiv link: https://arxiv.org/abs/1607.05194

Reuben Dorent and Samuel Joutard and Marc Modat and Sébastien Ourselin and Tom Vercauteren
Hetero-Modal Variational Encoder-Decoder for Joint Modality Completion and Segmentation
ArXiv link: https://arxiv.org/abs/1907.11150

	Parameters

	
	contrasts (list) – List of contrasts.

	out_channel (int) – Number of output channels.

	depth (int) – Number of down convolutions minus bottom down convolution.

	drop_rate (float) – Probability of dropout.

	bn_momentum (float) – Batch normalization momentum.

	**kwargs –

	Attributes

	
	depth (int) – Number of down convolutions minus bottom down convolution.

	contrasts (list) – List of contrasts.

	Encoder_mod (ModuleDict) – Contains encoder for each modality.

	decoder (Decoder) – U-Net decoder.

	
__init__(contrasts, out_channel=1, depth=3, drop_rate=0.4, bn_momentum=0.1, **kwargs)

	Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
forward(x_mods, indexes_mod)

	X is list like X = [x_T1, x_T2, x_T2S, x_F]
indexes_mod: list of arrays like [[1, 1, 1], [1, 1, 0], [1, 0, 1], [1, 1, 0]]
N.B. len(list) = number of contrasts.
len(list[i]) = Batch size

UNet3D

	
class UNet3D(in_channel, out_channel, n_filters=16, attention=False, drop_rate=0.6, bn_momentum=0.1, **kwargs)

	Bases: torch.nn.modules.module.Module

Code from the following repository:
https://github.com/pykao/Modified-3D-UNet-Pytorch
The main differences with the original UNet resides in the use of LeakyReLU instead of ReLU, InstanceNormalisation
instead of BatchNorm due to small batch size in 3D and the addition of segmentation layers in the decoder.

If attention=True, attention gates are added in the decoder to help focus attention on important features for a
given task. Code related to the attentions gates is inspired from:
https://github.com/ozan-oktay/Attention-Gated-Networks

	Parameters

	
	in_channel (int) – Number of channels in the input image.

	out_channel (int) – Number of channels in the output image.

	n_filters (int) – Number of base filters in the U-Net.

	attention (bool) – Boolean indicating whether the attention module is on or not.

	drop_rate (float) – Probability of dropout.

	bn_momentum (float) – Batch normalization momentum.

	**kwargs –

	Attributes

	
	in_channels (int) – Number of channels in the input image.

	n_classes (int) – Number of channels in the output image.

	base_n_filter (int) – Number of base filters in the U-Net.

	attention (bool) – Boolean indicating whether the attention module is on or not.

	momentum (float) – Batch normalization momentum.

Note: All layers are defined as attributes and used in the forward method.

	
__init__(in_channel, out_channel, n_filters=16, attention=False, drop_rate=0.6, bn_momentum=0.1, **kwargs)

	Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
forward(x)

	Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

Countception

	
class Countception(in_channel=3, out_channel=1, use_logits=False, logits_per_output=12, name='CC', **kwargs)

	Bases: torch.nn.modules.module.Module

Countception model.
Fully convolutional model using inception module and used for keypoints detection.
The inception model extracts several patches within each image. Every pixel is therefore processed by the
network several times, allowing to average multiple predictions and minimize false negatives.

See also

Cohen JP et al. “Count-ception: Counting by fully convolutional redundant counting.”
Proceedings of the IEEE International Conference on Computer Vision Workshops. 2017.

	Parameters

	
	in_channel (int) – number of channels on input image

	out_channel (int) – number of channels on output image

	use_logits (bool) – boolean to change output

	logits_per_output (int) – number of outputs of final convolution which will multiplied by the number of channels

	name (str) – model’s name used for call in configuration file.

	
__init__(in_channel=3, out_channel=1, use_logits=False, logits_per_output=12, name='CC', **kwargs)

	Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
forward(x)

	Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

Scripts

This section contains a collection of useful scripts for quality control during
the training of models.

ivadomed_visualize_transforms

	
run_visualization(input, config, number, output, roi)

	Utility function to visualize Data Augmentation transformations.

Data augmentation is a key part of the Deep Learning training scheme. This script aims at facilitating the
fine-tuning of data augmentation parameters. To do so, this script provides a step-by-step visualization of the
transformations that are applied on data.

This function applies a series of transformations (defined in a configuration file
-c) to -n 2D slices randomly extracted from an input image (-i), and save as png the resulting sample
after each transform.

For example:

ivadomed_visualize_transforms -i t2s.nii.gz -n 1 -c config.json -r t2s_seg.nii.gz

Provides a visualization of a series of three transformation on a randomly selected slice:

[image: _images/transforms_im.png]
And on a binary mask:

ivadomed_visualize_transforms -i t2s_gmseg.nii.gz -n 1 -c config.json -r t2s_seg.nii.gz

Gives:

[image: _images/transforms_gt.png]

	Parameters

	
	input (string) – Image filename. Flag: –input, -i

	config (string) – Configuration file filename. Flag: –config, -c

	number (int) – Number of slices randomly extracted. Flag: –number, -n

	output (string) – Folder path where the results are saved. Flag: –ofolder, -o

	roi (string) – Filename of the region of interest. Only needed if ROICrop is part of the transformations.
Flag: -roi, -r

ivadomed_convert_to_onnx

	
convert_pytorch_to_onnx(model, dimension, gpu=0)

	Convert PyTorch model to ONNX.

The integration of Deep Learning models into the clinical routine requires cpu optimized models. To export the
PyTorch models to ONNX [https://github.com/onnx/onnx] format and to run the inference using
ONNX Runtime [https://github.com/microsoft/onnxruntime] is a time and memory efficient way to answer this need.

This function converts a model from PyTorch to ONNX format, with information of whether it is a 2D or 3D model
(-d).

	Parameters

	
	model (string) – Model filename. Flag: –model, -m.

	dimension (int) – Indicates whether the model is 2D or 3D. Choice between 2 or 3. Flag: –dimension, -d

	gpu (string) – GPU ID, if available. Flag: –gpu, -g

ivadomed_automate_training

	
automate_training(config, param, fixed_split, all_combin, n_iterations=1, run_test=False, all_logs=False)

	Automate multiple training processes on multiple GPUs.

Hyperparameter optimization of models is tedious and time-consuming. This function automatizes this optimization
across multiple GPUs. It runs trainings, on the same training and validation datasets, by combining a given set of
parameters and set of values for each of these parameters. Results are collected for each combination and reported
into a dataframe to allow their comparison. The script efficiently allocates each training to one of the available
GPUs.

TODO: add example of DF

	Parameters

	
	config (string) – Configuration filename, which is used as skeleton to configure the training. Some of its
parameters (defined in param file) are modified across experiments. Flag: –config, -c

	param (string) – json file containing parameters configurations to compare. Parameter “keys” of this file
need to match the parameter “keys” of config file. Parameter “values” are in a list. Flag: –param, -p
Example:

"default_model": {"depth": [2, 3, 4]}

	fixed_split (bool) – If True, all the experiments are run on the same training/validation/testing subdatasets.
Flag: –fixed-split

	all_combin (bool) – If True, all parameters combinations are run. Flag: –all-combin

	n_iterations (int) – Controls the number of time that each experiment (ie set of parameter) are run.
Flag: –n-iteration, -n

	run_test (bool) – If True, the trained model is also run on the testing subdataset. flag: –run-test

	all_logs (bool) – If True, all the log directories are kept for every iteration. Flag: –all-logs, -l

ivadomed_compare_models

	
compute_statistics(dataframe, n_iterations, run_test=True)

	Compares the performance of models at inference time on a common testing dataset using paired t-tests.

	It uses a dataframe generated by scripts/automate_training.py with the parameter --run-test (used to run the

	models on the testing dataset).

TODO: add example of DF

	Parameters

	
	dataframe (pandas.Dataframe) – Dataframe of results generated by automate_training. Flag: –dataframe, -df

	n_iterations (int) – Indicates the number of time that each experiment (ie set of parameter) was run.
Flag: –n_iteration, -n

	run_test (int) – Indicates if the comparison is done on the performances on either the testing subdataset (True)
either on the training/validation subdatasets. Flag: –run_test

ivadomed_prepare_dataset_vertebral_labeling

	
extract_mid_slice_and_convert_coordinates_to_heatmaps(path, suffix, aim=-1)

	This function takes as input a path to a dataset and generates a set of images:
(i) mid-sagittal image and
(ii) heatmap of disc labels associated with the mid-sagittal image.

Example:

ivadomed_prepare_dataset_vertebral_labeling -p path/to/bids -s _T2w -a 0

	Parameters

	
	path (string) – path to BIDS dataset form which images will be generated. Flag: –path, -p

	suffix (string) – suffix of image that will be processed (e.g., T2w). Flag: –suffix, -s

	aim (int) – If aim is not 0, retrieves only labels with value = aim, else create heatmap with all labels.
Flag: –aim, -a

	Returns

	None. Images are saved in BIDS folder

ivadomed_extract_small_dataset

	
extract_small_dataset(input, output, n=10, contrast_list=None, include_derivatives=True, seed=-1)

	Extract small BIDS dataset from a larger BIDS dataset.

Example:

ivadomed_extract_small_dataset -i path/to/BIDS/dataset -o path/of/small/BIDS/dataset -n 10 -c T1w,T2w -d 0 -s 1234

	Parameters

	
	input (str) – Input BIDS folder. Flag: –input, -i

	output (str) – Output folder. Flag: –output, -o

	n (int) – Number of subjects in the output folder. Flag: –number, -n

	contrast_list (list) – List of image contrasts to include. If set to None, then all available contrasts are
included. Flag: –contrasts, -c

	include_derivatives (bool) – If True, derivatives/labels/ content is also copied, only the raw images otherwise.
Flag: –derivatives,-d

	seed (int) – Set np.random.RandomState to ensure reproducibility: the same subjects will be selected if the
function is run several times on the same dataset. If set to -1, each function run is independent.
Flag: –seed, -s.

One-class segmentation with 2D U-Net

In this tutorial we will learn the following features:

	Training of a segmentation model (U-Net 2D) with a single label on multiple contrasts,

	Testing of a trained model and computation of 3D evaluation metrics.

	Visualization of the outputs of a trained model.

Download dataset

We will use a publicly-available dataset consisting of MRI data of the spinal cord. This dataset is a subset of the
spine-generic multi-center dataset [https://github.com/spine-generic/data-multi-subject] and has been pre-processed
to facilitate training/testing of a new model. Namely, for each subject, all six contrasts were co-registered together,
and semi-manual cord segmentation label was created. More details
here [https://github.com/ivadomed/ivadomed/blob/master/dev/prepare_data/README.md].

To download the dataset (~450MB), run the following commands in your terminal:

Download data
curl -o ivadomed_spinegeneric_registered.zip -L https://github.com/ivadomed/data_spinegeneric_registered/releases/download/r20200907/data_spinegeneric_registered-r20200907.zip
unzip ivadomed_spinegeneric_registered.zip
Rename folder
mv ivadomed-data_spinegeneric_registered* data_spinegeneric_registered

Configuration file

In ivadomed, training is orchestrated by a configuration file. Examples of configuration files are available in
the ivadomed/config/ and the documentation is available in Configuration File.

In this tutorial we will use the configuration file: ivadomed/config/config.json.
First off, copy this configuration file in your local directory (to avoid modifying the source file):

cp <PATH_TO_IVADOMED>/ivadomed/config/config.json .

Then, open it with a text editor. Below we will discuss some of the key parameters to perform a one-class 2D
segmentation training.

	command: Action to perform. Here, we want to train a model, so we set the fields as follows:

"command": "train"

	loader_parameters:bids_path: Location of the dataset. As discussed in Data, the dataset
should conform to the BIDS standard.

"bids_path": "data_spinegeneric_registered",

	loader_parameters:target_suffix: Suffix of the ground truth segmentation. The ground truth is located
under the DATASET/derivatives/labels folder. In our case, the suffix is _seg-manual:

"target_suffix": ["_seg-manual"]

	loader_parameters:contrast_params: Contrast(s) of interest

"contrast_params": {
 "training_validation": ["T1w", "T2w", "T2star"],
 "testing": ["T1w", "T2w", "T2star"],
 "balance": {}
}

	loader_parameters:slice_axis: Orientation of the 2D slice to use with the model.

"slice_axis": "axial"

	loader_parameters:multichannel: Turn on/off multi-channel training. If true, each sample has several
channels, where each channel is an image contrast. If false, only one image contrast is used per sample.

"multichannel": false

Note

The multichannel approach requires that for each subject, the image contrasts are co-registered. This implies that
a ground truth segmentation is aligned with all contrasts, for a given subject. In this tutorial, only one channel
will be used.

Train model

Once the configuration file is ready, run the training:

ivadomed config.json

Note

If a compatible GPU [https://pytorch.org/get-started/locally/] is available, it will be used by default. Otherwise, training will use the CPU, which will take
a prohibitively long computational time (several hours).

The main parameters of the training scheme and model will be displayed on the terminal, followed by the loss value
on training and validation sets at every epoch. To know more about the meaning of each parameter, go to
Configuration File. The value of the loss should decrease during the training.

Creating log directory: spineGeneric
Using GPU number 0

Selected transformations for the training dataset:
Resample: {'wspace': 0.75, 'hspace': 0.75, 'dspace': 1, 'preprocessing': True}
CenterCrop: {'size': [128, 128], 'preprocessing': True}
RandomAffine: {'degrees': 5, 'scale': [0.1, 0.1], 'translate': [0.03, 0.03], 'applied_to': ['im', 'gt']}
ElasticTransform: {'alpha_range': [28.0, 30.0], 'sigma_range': [3.5, 4.5], 'p': 0.1, 'applied_to': ['im', 'gt']}
NumpyToTensor: {}
NormalizeInstance: {'applied_to': ['im']}

Selected transformations for the validation dataset:
Resample: {'wspace': 0.75, 'hspace': 0.75, 'dspace': 1, 'preprocessing': True}
CenterCrop: {'size': [128, 128], 'preprocessing': True}
NumpyToTensor: {}
NormalizeInstance: {'applied_to': ['im']}

Selected architecture: Unet, with the following parameters:
dropout_rate: 0.3
bn_momentum: 0.9
depth: 4
folder_name: seg_sc_t1_t2_t2s_mt
in_channel: 1
out_channel: 1
Loading dataset: 100%|██| 6/6 [00:00<00:00, 1854.79it/s]
Loaded 93 axial slices for the validation set.
Loading dataset: 100%|██| 18/18 [00:00<00:00, 1815.06it/s]
Loaded 291 axial slices for the training set.
Creating model directory: spineGeneric/seg_sc_t1_t2_t2s_mt

Initialising model's weights from scratch.

Scheduler parameters: {'base_lr': 1e-05, 'max_lr': 0.01}

Selected Loss: DiceLoss
with the parameters: []
Epoch 1 training loss: -0.0420.
Epoch 1 validation loss: -0.0507.

After 100 epochs (see "num_epochs" in the configuration file), the Dice score on the validation set should
be ~90%.

Evaluate model

To test the trained model on the testing sub-dataset and compute evaluation metrics, open your config file and
set command to eval:

"command": "eval"

Then run:

ivadomed config.json

The model’s parameters will be displayed in the terminal, followed by a preview of the results for each image.
The resulting segmentation is saved for each image in the <log_directory>/pred_masks while a csv file,
saved in log_directory/results/eval/evaluation_3Dmetrics.csv, contains all the evaluation metrics. For more details
on the evaluation metrics, see ivadomed.metrics.

Log directory already exists: spineGeneric
Using GPU number 0

Selected architecture: Unet, with the following parameters:
dropout_rate: 0.3
bn_momentum: 0.9
depth: 4
folder_name: seg_sc_t1_t2_t2s_mt
in_channel: 1
out_channel: 1

Run Evaluation on spineGeneric/pred_masks

Evaluation: 100%|███| 5/5 [00:06<00:00, 1.33s/it]
 avd_class0 dice_class0 lfdr_101-INFvox_class0 lfdr_class0 ... specificity_class0 vol_gt_class0 vol_pred_class0 lfdr_21-100vox_class0
image_id ...
sub-strasbourg04_T2w 0.047510 0.921796 0.0 0.0 ... 0.999939 4920.0 4686.25 NaN
sub-hamburg01_T2w 0.013496 0.943535 0.0 0.0 ... 0.999934 5650.0 5573.75 NaN
sub-hamburg01_T1w 0.103540 0.902706 0.0 0.0 ... 0.999946 5650.0 5065.00 NaN
sub-strasbourg04_T2star 0.082561 0.917791 0.0 0.0 ... 0.999852 4315.0 4671.25 NaN
sub-strasbourg04_T1w 0.437246 0.697122 0.5 0.5 ... 0.999979 4920.0 2768.75 NaN

[5 rows x 16 columns]

The test image segmentations are stored in <log_directory>/pred_masks/ and have the same name as the input image
with the suffix _pred. To visualize the segmentation of a given subject, you can use any Nifti image viewer.
For FSLeyes [https://users.fmrib.ox.ac.uk/~paulmc/fsleyes/userdoc/latest/] user, this command will open the
input image with the overlaid prediction (segmentation):

fsleyes path/to/input/image.nii.gz path/to/pred_masks/subject_id_contrast_pred.nii.gz -cm red -a 0.5

After the training for 100 epochs, the segmentations should be similar to the one presented in the following image.
The output and ground truth segmentations of the spinal cord are presented in red (subject sub-hamburg01 with
contrast T2w):

[image: ../_images/sc_prediction.png]

Contributing to ivadomed

Introduction

First off, thanks for taking the time to contribute! 🎉

When contributing to this repository, please first discuss the change
you wish to make by opening a new Github
issue [https://github.com/ivadomed/ivadomed/issues].

Contributions relating to content of the Github repository can be
submitted through Github pull requests (PR).

PR for bug fixes or new features should be based on the master
branch.

The following Github documentation may be useful:

	See Using Pull
Requests [https://help.github.com/articles/using-pull-requests]
for more information about Pull Requests.

	See Fork A Repo [http://help.github.com/forking/] for an
introduction to forking a repository.

	See Creating
branches [https://help.github.com/articles/creating-and-deleting-branches-within-your-repository/]
for an introduction on branching within GitHub.

For external contributors: Please fork this repository, make the
desired changes, and open a Pull request to have your code reviewed and
merged.

For internal contributor: You can open a
branch (see Opening a Branch) directly in this repository. If you don’t
have the rights, contact the team leader.

Opening an issue

Issues (bugs, feature requests, or others) can be submitted on our
project’s issue
page. [https://github.com/ivadomed/ivadomed/issues]

Before Submitting a New Issue

Please take a few seconds to search the issue database in case the issue
has already been raised.

When reporting an issue, make sure your installation has not been
tempered with (and if you can, update to the latest release, maybe the
problem was fixed).

Submitting an Issue

Issue Title

Try to have a self-descriptive, meaningful issue title, summarizing the
problem you see.

Examples:

	Crashes during image cropping

	Add a special mode for multi-class segmentation

Issue Body

Describe the issue and mention the IVADO Medical Imaging version and
OS that you are using.

If you experience an error, copy/paste the Terminal output (include your
syntax) and please follow these guidelines for clarity:

	If there is less than 10 lines of text, embed it directly in your
comment in Github. Use “~~~” to format as code.

	If there is 10+ lines, either use an external website such as
pastebin [https://pastebin.com/] (copy/paste your text and
include the URL in your comment), or use collapsable Github markdown
capabilities [https://gist.github.com/ericclemmons/b146fe5da72ca1f706b2ef72a20ac39d#using-details-in-github].

Add useful information such as screenshots, etc.

If you submit a feature request, provide a usage scenario, imagining
how the feature would be used (ideally inputs, a sequence of commands,
and a desired outcome). Also provide references to any theoretical work
to help the reader better understand the feature.

Opening a Branch

If you are part of the core developer team, you can open a branch
directly in this repository. Prefix the branch name with a personal
identifier and a forward slash; If the branch you are working on is in
response to an issue, provide the issue number; Add some text that make
the branch name meaningful.

Examples:

	ol/100-fixup-lr-scheduler

	ab/loader-pep8

Developing

Conflicts

Make sure the PR changes are not in conflict with the master branch.

Code style

Please review your changes for styling issues, clarity, according to the
PEP8 convention [https://www.python.org/dev/peps/pep-0008/]. Correct
any code style suggested by an analyzer on your changes.
PyCharm [https://www.jetbrains.com/help/pycharm/2016.1/code-inspection.html]
has a code analyser integrated or you can use
pyflakes [https://github.com/PyCQA/pyflakes].

Do not address your functional changes in the same commits as any
styling clean-up you may be doing on existing code.

Documentation and docstrings

If you are implementing a new feature, update the documentation to
describe the feature, and comment the code (things that are not
trivially understandable from the code) to improve its maintainability.

Make sure to cite any papers, algorithms or articles that can help
understand the implementation of the feature. If you are implementing an
algorithm described in a paper, add pointers to the section / steps.

Please use the Google style
docstrings [https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html].

Testing

Please add tests, especially with new code. Unit tests are located under
testing/. They are straightforward to augment, but we understand
it’s the extra mile; it would still be appreciated if you provide
something lighter (eg. in the commit messages or in the PR or issue
text) that demonstrates that an issue was fixed, or a feature is
functional.

Consider that if you add test cases, they will ensure that your feature
– which you probably care about – does not stop working in the future.

Licensing

Ensure that you are the original author of your changes, and if that is
not the case, ensure that the borrowed/adapted code is compatible with
the project’s
license [https://ivadomed.org/en/latest/index.html#license].

Committing

Commit Titles

Provide a concise and self-descriptive title (avoid > 80 characters).
You may “scope” the title using the applicable command name(s), folder
or other “module” as a prefix. If a commit is responsible for fixing an
issue, post-fix the description with (fixes #ISSUE_NUMBER).

Examples:

testing: add testing function for validation metrics
loader: add timer
documentation: add slice_axis to the config files
model: add HeMIS network

Commit Sequences

Update your branch to be baseline on the latest master if new
developments were merged while you were developing. Please prefer
rebasing to merging, as explained in this
tutorial [https://coderwall.com/p/7aymfa/please-oh-please-use-git-pull-rebase].
Note that if you do rebases after review have started, they will be
cancelled, so at this point it may be more appropriate to do a pull.

Clean-up your commit sequence. If your are not familiar with git, this
good
tutorial [https://www.atlassian.com/git/tutorials/rewriting-history]
on the subject may help you.

Focus on committing 1 logical change at a time. See this
article [https://github.com/erlang/otp/wiki/writing-good-commit-messages]
on the subject.

Submitting a Pull Request

PR Title

The PR title is used to automatically generate the
Changelog [https://github.com/ivadomed/ivadomed/blob/master/CHANGES.md]
for each new release, so please follow the following rules:

	Provide a concise and self-descriptive title (see Issue Title).

	Do not include the applicable issue number in the title, do it in the PR body (see PR Body).

	If the PR is not ready for review, convert it to a draft.

PR Body

Describe what the PR is about, explain the approach and possible
drawbacks. Don’t hesitate to repeat some of the text from the related
issue (easier to read than having to click on the link).

If the PR fixes issue(s), indicate it after your introduction:
Fixes #XXXX, Fixes #YYYY. Note: it is important to respect the
syntax above so that the issue(s) will be closed upon merging the PR.

Work in progress

If your PR is not ready for review yet, you can convert it to a “Draft”, so the team is informed.

A draft pull request is styled differently to clearly indicate that it’s in a draft state.
Merging is blocked in draft pull requests. Change the status to “Ready for review” near the
bottom of your pull request to remove the draft state and allow merging according to your
project’s settings.

Continuous Integration

The PR can’t be merged if Github Actions “Run
tests” [https://github.com/ivadomed/ivadomed/actions]
hasn’t succeeded. If you are familiar with it, consult the test results
to fix the problem.

Reviewers

Any changes submitted for inclusion to the master branch will have to go
through a
review [https://help.github.com/articles/about-pull-request-reviews/].

Only request a review when you deem the PR as “good to go”. If the PR is
not ready for review, convert it to a “Draft”.

Github may suggest you to add particular reviewers to your PR. If that’s
the case and you don’t know better, add all of these suggestions. The
reviewers will be notified when you add them.

Versioning

Versioning uses the following convention: MAJOR.MINOR.PATCH, where:

PATCH version when there are backwards-compatible bug fixes or
enhancements, without alteration to Python’s modules or data/binaries.
MINOR version when there are minor API changes or new functionality in a
backwards-compatible manner, or when there are alteration to Python’s
modules or data/binaries (which requires to re-run installer for people
working on the dev version), MAJOR version when there are major
incompatible API changes, Beta releases follow the following convention:

MAJOR.MINOR.PATCH-beta.x (with x = 0, 1, 2, etc.) Stable version is
indicated in the file version.txt. For development version (on master),
the version is “dev”.

API Reference

This document is for developers of ivadomed, it contains the API functions.

Loader API

loader.adaptative

	
class Bids_to_hdf5(root_dir, subject_lst, target_suffix, contrast_lst, hdf5_name, contrast_balance=None, slice_axis=2, metadata_choice=False, slice_filter_fn=None, roi_params=None, transform=None, object_detection_params=None, soft_gt=False)

	Bases: object

Converts a BIDS dataset to a HDF5 file.

	Parameters

	
	root_dir (str) – Path to the BIDS dataset.

	subject_lst (list) – Subject names list.

	target_suffix (list) – List of suffixes for target masks.

	roi_params (dict) – Dictionary containing parameters related to ROI image processing.

	contrast_lst (list) – List of the contrasts.

	hdf5_name (str) – Path and name of the hdf5 file.

	contrast_balance (dict) – Dictionary controlling image contrasts balance.

	slice_axis (int) – Indicates the axis used to extract slices: “axial”: 2, “sagittal”: 0, “coronal”: 1.

	metadata_choice (str) – Choice between “mri_params”, “contrasts”, None or False, related to FiLM.

	slice_filter_fn (SliceFilter) – Class that filters slices according to their content.

	transform (Compose) – Transformations.

	object_detection_params (dict) – Object detection parameters.

	Attributes

	
	bids_ds (BIDS) – BIDS dataset.

	dt (dtype) – hdf5 special dtype.

	hdf5_file (hdf5) – hdf5 file containing dataset information.

	filename_pairs (list) – A list of tuples in the format (input filename list containing all modalities,ground truth filename, ROI filename, metadata).

	metadata (dict) – Dictionary containing metadata of input and gt.

	prepro_transforms (Compose) – Transforms to be applied before training.

	transform (Compose) – Transforms to be applied during training.

	has_bounding_box (bool) – True if all metadata contains bounding box coordinates, else False.

	slice_axis (int) – Indicates the axis used to extract slices: “axial”: 2, “sagittal”: 0, “coronal”: 1.

	slice_filter_fn (SliceFilter) – Object that filters slices according to their content.

	
__init__(root_dir, subject_lst, target_suffix, contrast_lst, hdf5_name, contrast_balance=None, slice_axis=2, metadata_choice=False, slice_filter_fn=None, roi_params=None, transform=None, object_detection_params=None, soft_gt=False)

	Initialize self. See help(type(self)) for accurate signature.

	
class Dataframe(hdf5, contrasts, path, target_suffix=None, roi_suffix=None, filter_slices=False, dim=2)

	Bases: object

This class aims to create a dataset using an HDF5 file, which can be used by an adapative loader
to perform curriculum learning, Active Learning or any other strategy that needs to load samples in a specific way.
It works on RAM or on the fly and can be saved for later.

	Parameters

	
	hdf5 (hdf5) – hdf5 file containing dataset information

	contrasts (list of str) – List of the contrasts of interest.

	path (str) – Dataframe path.

	target_suffix (list of str) – List of suffix of targetted structures.

	roi_suffix (str) – List of suffix of ROI masks.

	filter_slices (SliceFilter) – Object that filters slices according to their content.

	dim (int) – Choice 2 or 3, for 2D or 3D data respectively.

	Attributes

	
	dim (int) – Choice 2 or 3, for 2D or 3D data respectively.

	contrasts (list of str) – List of the contrasts of interest.

	filter_slices (SliceFilter) – Object that filters slices according to their content.

	df (pd.Dataframe) – Dataframe containing dataset information

	
__init__(hdf5, contrasts, path, target_suffix=None, roi_suffix=None, filter_slices=False, dim=2)

	Initialize self. See help(type(self)) for accurate signature.

	
clean(contrasts)

	Aims to remove lines where one of the contrasts in not available.

	Agrs:

	contrasts (list of str): List of contrasts.

	
create_df(hdf5)

	Generate the Data frame using the hdf5 file.

	Parameters

	hdf5 (hdf5) – File containing dataset information

	
load_dataframe(path)

	Load the dataframe from a csv file.

	Parameters

	path (str) – Path to hdf5 file.

	
save(path)

	Save the dataframe into a csv file.

	Parameters

	path (str) – Path to hdf5 file.

	
shuffle()

	Shuffle the whole data frame.

	
class HDF5Dataset(root_dir, subject_lst, model_params, target_suffix, contrast_params, slice_axis=2, transform=None, metadata_choice=False, dim=2, complet=True, slice_filter_fn=None, roi_params=None, object_detection_params=None, soft_gt=False)

	Bases: object

HDF5 dataset object.

	Parameters

	
	root_dir (path) – Path of bids and data.

	subject_lst (list of str) – List of subjects.

	model_params (dict) – Dictionary containing model parameters.

	target_suffix (list of str) – List of suffixes of the target structures.

	contrast_params (dict) – Dictionary containing contrast parameters.

	slice_axis (int) – Indicates the axis used to extract slices: “axial”: 2, “sagittal”: 0, “coronal”: 1.

	transform (Compose) – Transformations.

	metadata_choice (str) – Choice between “mri_params”, “contrasts”, None or False, related to FiLM.

	dim (int) – Choice 2 or 3, for 2D or 3D data respectively.

	complet (bool) – If True removes lines where contrasts is not available.

	slice_filter_fn (SliceFilter) – Object that filters slices according to their content.

	roi_params (dict) – Dictionary containing parameters related to ROI image processing.

	object_detection_params (dict) – Object detection parameters.

	Attributes

	
	cst_lst (list) – Contrast list.

	gt_lst (list) – Contrast label used for ground truth.

	roi_lst (list) – Contrast label used for ROI cropping.

	dim (int) – Choice 2 or 3, for 2D or 3D data respectively.

	filter_slices (SliceFilter) – Object that filters slices according to their content.

	prepro_transforms (Compose) – Transforms to be applied before training.

	transform (Compose) – Transforms to be applied during training.

	df_object (pd.Dataframe) – Dataframe containing dataset information.

	
__getitem__(index)

	Get samples.

Warning: For now, this method only supports one gt / roi.

	Parameters

	index (int) – Sample index.

	Returns

	Dictionary containing image and label tensors as well as metadata.

	Return type

	dict

	
__init__(root_dir, subject_lst, model_params, target_suffix, contrast_params, slice_axis=2, transform=None, metadata_choice=False, dim=2, complet=True, slice_filter_fn=None, roi_params=None, object_detection_params=None, soft_gt=False)

	Initialize self. See help(type(self)) for accurate signature.

	
__len__()

	Get the dataset size, ie he number of subvolumes.

	
load_into_ram(contrast_lst=None)

	Aims to load into RAM the contrasts from the list.

	Parameters

	contrast_lst (list of str) – List of contrasts of interest.

	
set_transform(transform)

	Set the transforms.

	
update(strategy='Missing', p=0.0001)

	Update the Dataframe itself.

	Parameters

	
	p (float) – Float between 0 and 1, probability of the contrast to be missing.

	strategy (str) – Update the dataframe using the corresponding strategy. For now the only the strategy
implemented is the one used by HeMIS (i.e. by removing contrasts with a certain probability.) Other
strategies that could be implemented are Active Learning, Curriculum Learning, …

	
HDF5_to_Bids(HDF5, subjects, path_dir)

	Convert HDF5 file to BIDS dataset.

	Parameters

	
	HDF5 (str) – Path to the HDF5 file.

	subjects (list) – List of subject names.

	path_dir (str) – Output folder path, already existing.

loader.film

	
class Kde_model

	Bases: object

Kernel Density Estimation.

Apply this clustering method to metadata values, using (sklearn implementation. [https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KernelDensity.html#sklearn.neighbors.KernelDensity])

	Attributes

	
	kde (sklearn.neighbors.KernelDensity)

	minima (float) – Local minima.

	
__init__()

	Initialize self. See help(type(self)) for accurate signature.

	
check_isMRIparam(mri_param_type, mri_param, subject, metadata)

	Check if a given metadata belongs to the MRI parameters.

	Parameters

	
	mri_param_type (str) – Metadata type name.

	mri_param (list) – List of MRI params names.

	subject (str) – Current subject name.

	metadata (dict) – Metadata.

	Returns

	True if mri_param_type is part of mri_param.

	Return type

	bool

	
clustering_fit(dataset, key_lst)

	This function creates clustering models for each metadata type,
using Kernel Density Estimation algorithm.

	Parameters

	
	datasets (list) – data

	key_lst (list of str) – names of metadata to cluster

	Returns

	Clustering model for each metadata type in a dictionary where the keys are the metadata names.

	Return type

	dict

	
get_film_metadata_models(ds_train, metadata_type, debugging=False)

	Get FiLM models.

This function pulls the clustering and one-hot encoder models that are used by FiLMedUnet.
It also calls the normalization of metadata.

	Parameters

	
	ds_train (MRI2DSegmentationDataset) – training dataset

	metadata_type (string) – eg mri_params, contrasts

	debugging (bool) –

	Returns

	dataset, one-hot encoder and KDE model

	Return type

	MRI2DSegmentationDataset, OneHotEncoder, KernelDensity

	
normalize_metadata(ds_in, clustering_models, debugging, metadata_type, train_set=False)

	Categorize each metadata value using a KDE clustering method, then apply a one-hot-encoding.

	Parameters

	
	ds_in (BidsDataset) – Dataset with metadata.

	clustering_models – Pre-trained clustering model that has been trained on metadata of the training set.

	debugging (bool) – If True, extended verbosity and intermediate outputs.

	metadata_type (str) – Choice between ‘mri_params’ and ‘constrasts’.

	train_set (bool) – Indicates if the input dataset is the training dataset (True) or the validation or testing
dataset (False).

	Returns

	
	Dataset with normalized metadata. If train_set is True, then the one-hot-encoder model is also

	returned.

	Return type

	BidsDataset

loader.loader

	
class Bids3DDataset(root_dir, subject_lst, target_suffix, model_params, contrast_params, slice_axis=2, cache=True, transform=None, metadata_choice=False, roi_params=None, multichannel=False, object_detection_params=None, soft_gt=False)

	Bases: ivadomed.loader.loader.MRI3DSubVolumeSegmentationDataset

BIDS specific dataset loader for 3D dataset.

	Parameters

	
	root_dir (str) – Path to the BIDS dataset.

	subject_lst (list) – Subject names list.

	target_suffix (list) – List of suffixes for target masks.

	model_params (dict) – Dictionary containing model parameters.

	contrast_params (dict) – Contains image contrasts related parameters.

	slice_axis (int) – Indicates the axis used to extract slices: “axial”: 2, “sagittal”: 0, “coronal”: 1.

	cache (bool) – If the data should be cached in memory or not.

	transform (list) – Transformation list (length 2) composed of preprocessing transforms (Compose) and transforms
to apply during training (Compose).

	metadata_choice – Choice between “mri_params”, “contrasts”, None or False, related to FiLM.

	roi_params (dict) – Dictionary containing parameters related to ROI image processing.

	multichannel (bool) – If True, the input contrasts are combined as input channels for the model. Otherwise, each
contrast is processed individually (ie different sample / tensor).

	object_detection_params (dict) – Object dection parameters.

	
__init__(root_dir, subject_lst, target_suffix, model_params, contrast_params, slice_axis=2, cache=True, transform=None, metadata_choice=False, roi_params=None, multichannel=False, object_detection_params=None, soft_gt=False)

	Initialize self. See help(type(self)) for accurate signature.

	
class BidsDataset(root_dir, subject_lst, target_suffix, contrast_params, slice_axis=2, cache=True, transform=None, metadata_choice=False, slice_filter_fn=None, roi_params=None, multichannel=False, object_detection_params=None, task='segmentation', soft_gt=False)

	Bases: ivadomed.loader.loader.MRI2DSegmentationDataset

BIDS specific dataset loader.

	Parameters

	
	root_dir (str) – Path to the BIDS dataset.

	subject_lst (list) – Subject names list.

	target_suffix (list) – List of suffixes for target masks.

	contrast_params (dict) – Contains image contrasts related parameters.

	slice_axis (int) – Indicates the axis used to extract slices: “axial”: 2, “sagittal”: 0, “coronal”: 1.

	cache (bool) – If the data should be cached in memory or not.

	transform (list) – Transformation list (length 2) composed of preprocessing transforms (Compose) and transforms
to apply during training (Compose).

	metadata_choice (str) – Choice between “mri_params”, “contrasts”, None or False, relatec to FiLM.

	slice_filter_fn (SliceFilter) – Class that filters slices according to their content.

	roi_params (dict) – Dictionary containing parameters related to ROI image processing.

	multichannel (bool) – If True, the input contrasts are combined as input channels for the model. Otherwise, each
contrast is processed individually (ie different sample / tensor).

	object_detection_params (dict) – Object dection parameters.

	task (str) – Choice between segmentation or classification. If classification: GT is discrete values, If segmentation: GT is binary mask.

	soft_gt (bool) – If True, ground truths will be converted to float32, otherwise to uint8 and binarized
(to save memory).

	Attributes

	
	bids_ds (BIDS) – BIDS dataset.

	filename_pairs (list) – A list of tuples in the format (input filename list containing all modalities,ground truth filename, ROI filename, metadata).

	metadata (dict) – Dictionary containing FiLM metadata.

	
__init__(root_dir, subject_lst, target_suffix, contrast_params, slice_axis=2, cache=True, transform=None, metadata_choice=False, slice_filter_fn=None, roi_params=None, multichannel=False, object_detection_params=None, task='segmentation', soft_gt=False)

	Initialize self. See help(type(self)) for accurate signature.

	
class MRI2DSegmentationDataset(filename_pairs, slice_axis=2, cache=True, transform=None, slice_filter_fn=None, task='segmentation', roi_params=None, soft_gt=False)

	Bases: torch.utils.data.dataset.Dataset

Generic class for 2D (slice-wise) segmentation dataset.

	Parameters

	
	filename_pairs (list) – a list of tuples in the format (input filename list containing all modalities,ground truth filename, ROI filename, metadata).

	slice_axis (int) – axis to make the slicing (default axial).

	cache (bool) – if the data should be cached in memory or not.

	transform (torchvision.Compose) – transformations to apply.

	slice_filter_fn (dict) – Slice filter parameters, see Configuration File for more details.

	task (str) – choice between segmentation or classification. If classification: GT is discrete values, If segmentation: GT is binary mask.

	roi_params (dict) – Dictionary containing parameters related to ROI image processing.

	soft_gt (bool) – If True, ground truths are expected to be non-binarized images encoded in float32 and will be
fed as is to the network. Otherwise, ground truths are converted to uint8 and binarized to save memory
space.

	Attributes

	
	indexes (list) – List of indices corresponding to each slice or subvolume in the dataset.

	filename_pairs (list) – List of tuples in the format (input filename list containing all modalities,ground truth filename, ROI filename, metadata).

	prepro_transforms (Compose) – Transformations to apply before training.

	transform (Compose) – Transformations to apply during training.

	cache (bool) – Tf the data should be cached in memory or not.

	slice_axis (int) – Indicates the axis used to extract slices: “axial”: 2, “sagittal”: 0, “coronal”: 1.

	slice_filter_fn (dict) – Slice filter parameters, see Configuration File for more details.

	n_contrasts (int) – Number of input contrasts.

	has_bounding_box (bool) – True if bounding box in all metadata, else False.

	task (str) – Choice between segmentation or classification. If classification: GT is discrete values, If segmentation: GT is binary mask.

	soft_gt (bool) – If True, ground truths are expected to be non-binarized images encoded in float32 and will be
fed as is to the network. Otherwise, ground truths are converted to uint8 and binarized to save memory
space.

	slice_filter_roi (bool) – Indicates whether a slice filtering is done based on ROI data.

	roi_thr (int) – If the ROI mask contains less than this number of non-zero voxels, the slice will be discarded
from the dataset.

	
__getitem__(index)

	Return the specific processed data corresponding to index (input, ground truth, roi and metadata).

	Parameters

	index (int) – Slice index.

	
__init__(filename_pairs, slice_axis=2, cache=True, transform=None, slice_filter_fn=None, task='segmentation', roi_params=None, soft_gt=False)

	Initialize self. See help(type(self)) for accurate signature.

	
load_filenames()

	Load preprocessed pair data (input and gt) in handler.

	
class MRI3DSubVolumeSegmentationDataset(filename_pairs, transform=None, length=(64, 64, 64), stride=(0, 0, 0), slice_axis=0, soft_gt=False)

	Bases: torch.utils.data.dataset.Dataset

This is a class for 3D segmentation dataset. This class splits the initials volumes in several
subvolumes. Each subvolumes will be of the sizes of the length parameter.

This class also implement a stride parameter corresponding to the amount of voxels subvolumes are translated in
each dimension at every iteration.

Be careful, the input’s dimensions should be compatible with the given
lengths and strides. This class doesn’t handle missing dimensions.

	Parameters

	
	filename_pairs (list) – A list of tuples in the format (input filename, ground truth filename).

	transform (Compose) – Transformations to apply.

	length (tuple) – Size of each dimensions of the subvolumes, length equals 3.

	stride (tuple) – Size of the overlapping per subvolume and dimensions, length equals 3.

	slice_axis (int) – Indicates the axis used to extract slices: “axial”: 2, “sagittal”: 0, “coronal”: 1.

	soft_gt (bool) – If True, ground truths are expected to be non-binarized images encoded in float32 and will be
fed as is to the network. Otherwise, ground truths are converted to uint8 and binarized to save memory
space.

	
__getitem__(index)

	Return the specific index pair subvolume (input, ground truth).

	Parameters

	index (int) – Subvolume index.

	
__init__(filename_pairs, transform=None, length=(64, 64, 64), stride=(0, 0, 0), slice_axis=0, soft_gt=False)

	Initialize self. See help(type(self)) for accurate signature.

	
__len__()

	Return the dataset size. The number of subvolumes.

	
class SegmentationPair(input_filenames, gt_filenames, metadata=None, slice_axis=2, cache=True, prepro_transforms=None, soft_gt=False)

	Bases: object

This class is used to build segmentation datasets. It represents
a pair of of two data volumes (the input data and the ground truth data).

	Parameters

	
	input_filenames (list of str) – The input filename list (supported by nibabel). For single channel, the list will
contain 1 input filename.

	gt_filenames (list of str) – The ground-truth filenames list.

	metadata (list) – Metadata list with each item corresponding to an image (contrast) in input_filenames.
For single channel, the list will contain metadata related to one image.

	cache (bool) – If the data should be cached in memory or not.

	slice_axis (int) – Indicates the axis used to extract slices: “axial”: 2, “sagittal”: 0, “coronal”: 1.

	prepro_transforms (dict) – Output of get_preprocessing_transforms.

	soft_gt (bool) – If True, ground truths will be converted to float32, otherwise to uint8 and binarized
(to save memory).

	Attributes

	
	input_filenames (list) – List of input filenames.

	gt_filenames (list) – List of ground truth filenames.

	metadata (dict) – Dictionary containing metadata of input and gt.

	cache (bool) – If the data should be cached in memory or not.

	slice_axis (int) – Indicates the axis used to extract slices: “axial”: 2, “sagittal”: 0, “coronal”: 1.

	prepro_transforms (dict) – Transforms to be applied before training.

	input_handle (list) – List of input nifty data.

	gt_handle (list) – List of gt nifty data.

	
__init__(input_filenames, gt_filenames, metadata=None, slice_axis=2, cache=True, prepro_transforms=None, soft_gt=False)

	Initialize self. See help(type(self)) for accurate signature.

	
get_pair_data()

	Return the tuple (input, ground truth) with the data content in numpy array.

	
get_pair_metadata(slice_index=0, coord=None)

	Return dictionary containing input and gt metadata.

	Parameters

	
	slice_index (int) – Index of 2D slice if 2D model is used, else 0.

	coord (tuple or list) – Coordinates of subvolume in volume if 3D model is used, else None.

	Returns

	Input and gt metadata.

	Return type

	dict

	
get_pair_shapes()

	Return the tuple (input, ground truth) representing both the input and ground truth shapes.

	
get_pair_slice(slice_index, gt_type='segmentation')

	Return the specified slice from (input, ground truth).

	Parameters

	
	slice_index (int) – Slice number.

	gt_type (str) – Choice between segmentation or classification, returns mask (array) or label (int) resp.
for the ground truth.

	
load_dataset(data_list, bids_path, transforms_params, model_params, target_suffix, roi_params, contrast_params, slice_filter_params, slice_axis, multichannel, dataset_type='training', requires_undo=False, metadata_type=None, object_detection_params=None, soft_gt=False, **kwargs)

	Get loader appropriate loader according to model type. Available loaders are Bids3DDataset for 3D data,
BidsDataset for 2D data and HDF5Dataset for HeMIS.

	Parameters

	
	data_list (list) – Subject names list.

	bids_path (str) – Path to the BIDS dataset.

	transforms_params (dict) – Dictionary containing transformations for “training”, “validation”, “testing” (keys),
eg output of imed_transforms.get_subdatasets_transforms.

	model_params (dict) – Dictionary containing model parameters.

	target_suffix (list of str) – List of suffixes for target masks.

	roi_params (dict) – Contains ROI related parameters.

	contrast_params (dict) – Contains image contrasts related parameters.

	slice_filter_params (dict) – Contains slice_filter parameters, see Configuration File for more details.

	slice_axis (string) – Choice between “axial”, “sagittal”, “coronal” ; controls the axis used to extract the 2D
data.

	multichannel (bool) – If True, the input contrasts are combined as input channels for the model. Otherwise, each
contrast is processed individually (ie different sample / tensor).

	metadata_type (str) – Choice between None, “mri_params”, “contrasts”.

	dataset_type (str) – Choice between “training”, “validation” or “testing”.

	requires_undo (bool) – If True, the transformations without undo_transform will be discarded.

	object_detection_params (dict) – Object dection parameters.

	soft_gt (bool) – If True, ground truths will be converted to float32, otherwise to uint8 and binarized
(to save memory).

	Returns

	BidsDataset

Note: For more details on the parameters transform_params, target_suffix, roi_params, contrast_params,
slice_filter_params and object_detection_params see Configuration File.

loader.utils

	
class BalancedSampler(dataset)

	Bases: torch.utils.data.sampler.Sampler

Estimate sampling weights in order to rebalance the
class distributions from an imbalanced dataset.

	Parameters

	dataset (BidsDataset) – Dataset containing input, gt and metadata.

	Attributes

	
	indices (list) – List from 0 to length of dataset (number of elements in the dataset).

	nb_samples (int) – Number of elements in the dataset.

	weights (Tensor) – Weight of each dataset element equal to 1 over the frequency of a given label (inverse of the
frequency).

	
__init__(dataset)

	Initialize self. See help(type(self)) for accurate signature.

	
class SampleMetadata(d=None)

	Bases: object

Metadata class to help update, get and set metadata values.

	Parameters

	d (dict) – Initial metadata.

	Attributes

	metadata (dict) – Image metadata.

	
__init__(d=None)

	Initialize self. See help(type(self)) for accurate signature.

	
clean_metadata(metadata_lst)

	Remove keys from metadata. The keys to be deleted are stored in a list.

	Parameters

	metadata_lst (list) – List of SampleMetadata.

	Returns

	List of SampleMetadata with removed keys.

	Return type

	list

	
filter_roi(roi_data, nb_nonzero_thr)

	Filter slices from dataset using ROI data.

This function filters slices (roi_data) where the number of non-zero voxels within the ROI slice (e.g. centerline,
SC segmentation) is inferior or equal to a given threshold (nb_nonzero_thr).

	Parameters

	
	roi_data (nd.array) – ROI slice.

	nb_nonzero_thr (int) – Threshold.

	Returns

	True if the slice needs to be filtered, False otherwise.

	Return type

	bool

	
get_new_subject_split(path_folder, center_test, split_method, random_seed, train_frac, test_frac, log_directory)

	Randomly split dataset between training / validation / testing.

Randomly split dataset between training / validation / testing and save it in log_directory + “/split_datasets.joblib”.

	Parameters

	
	path_folder (string) – Dataset folder.

	center_test (list) – List of centers to include in the testing set.

	split_method (string) – See imed_loader_utils.split_dataset.

	random_seed (int) – Random seed.

	train_frac (float) – Training dataset proportion, between 0 and 1.

	test_frac (float) – Testing dataset proportionm between 0 and 1.

	log_directory (string) – Output folder.

	Returns

	Training, validation and testing subjects lists.

	Return type

	list, list list

	
get_subdatasets_subjects_list(split_params, bids_path, log_directory)

	Get lists of subjects for each sub-dataset between training / validation / testing.

	Parameters

	
	split_params (dict) – Split parameters, see Configuration File for more details.

	bids_path (str) – Path to the BIDS dataset.

	log_directory (str) – Output folder.

	Returns

	Training, validation and testing subjects lists.

	Return type

	list, list list

	
imed_collate(batch)

	Collates data to create batches

	Parameters

	batch (dict) – Contains input and gt data with their corresponding metadata.

	Returns

	Collated data.

	Return type

	list or dict or str or tensor

	
orient_img_hwd(data, slice_axis)

	Orient a given RAS image to height, width, depth according to slice axis.

	Parameters

	
	data (ndarray) – RAS oriented data.

	slice_axis (int) – Indicates the axis used for the 2D slice extraction: Sagittal: 0, Coronal: 1, Axial: 2.

	Returns

	Array oriented with the following dimensions: (height, width, depth).

	Return type

	ndarray

	
orient_img_ras(data, slice_axis)

	Orient a given array with dimensions (height, width, depth) to RAS orientation.

	Parameters

	
	data (ndarray) – Data with following dimensions (Height, Width, Depth).

	slice_axis (int) – Indicates the axis used for the 2D slice extraction: Sagittal: 0, Coronal: 1, Axial: 2.

	Returns

	Array oriented in RAS.

	Return type

	ndarray

	
orient_shapes_hwd(data, slice_axis)

	Swap dimensions according to match the height, width, depth orientation.

	Parameters

	
	data (list or tuple) – Shape or numbers associated with each image dimension (e.i. image resolution).

	slice_axis (int) – Indicates the axis used for the 2D slice extraction: Sagittal: 0, Coronal: 1, Axial: 2.

	Returns

	Reoriented vector.

	Return type

	ndarray

	
split_dataset(path_folder, center_test_lst, split_method, random_seed, train_frac=0.8, test_frac=0.1)

	Splits list of subject into training, validation and testing datasets either according to their center or per
patient. In the ‘per_center’ option the centers associated the subjects are split according the train, test and
validation fraction whereas in the ‘per_patient’, the patients are directly separated according to these fractions.

	Parameters

	
	path_folder (str) – Path to BIDS folder.

	center_test_lst (list) – list of centers to include in the testing set.

	split_method (str) – Between ‘per_center’ or ‘per_person’. If ‘per_center’ the separation fraction are
applied to centers, if ‘per_person’ they are applied to the subject list.

	random_seed (int) – Random seed to ensure reproducible splits.

	train_frac (float) – Between 0 and 1. Represents the train set proportion.

	test_frac (float) – Between 0 and 1. Represents the test set proportion.

	Returns

	Train, validation and test subjects list.

	Return type

	list, list, list

	
update_metadata(metadata_src_lst, metadata_dest_lst)

	Update metadata keys with a reference metadata. A given list of metadata keys will be changed and given the
values of the reference metadata.

	Parameters

	
	metadata_src_lst (list) – List of source metadata used as reference for the destination metadata.

	metadata_dest_lst (list) – List of metadate that needs to be updated.

	Returns

	updated metadata list.

	Return type

	list

Object Detection API

object_detection.utils

	
adjust_bb_size(bounding_box, factor, resample=False)

	Modifies the bounding box dimensions according to a given factor.

	Parameters

	
	bounding_box (list or tuple) – Coordinates of bounding box (x_min, x_max, y_min, y_max, z_min, z_max).

	factor (list or tuple) – Multiplicative factor for each dimension (list or tuple of length 3).

	resample (bool) – Boolean indicating if this resize is for resampling.

	Returns

	New coordinates (x_min, x_max, y_min, y_max, z_min, z_max).

	Return type

	list

	
adjust_transforms(transforms, seg_pair, length=None, stride=None)

	This function adapts the transforms by adding the BoundingBoxCrop transform according the specific parameters of
an image. The dimensions of the crop are also adapted to fit the length and stride parameters if the 3D loader is
used.

	Parameters

	
	transforms (Compose) – Prepreocessing transforms.

	seg_pair (dict) – Segmentation pair (input, gt and metadata).

	length (list or tuple) – Patch size of the 3D loader.

	stride (list or tuple) – Stride value of the 3D loader.

	Returns

	Modified transforms.

	Return type

	Compose

	
adjust_undo_transforms(transforms, seg_pair, index=0)

	This function adapts the undo transforms by adding the BoundingBoxCrop to undo transform according the specific
parameters of an image.

	Parameters

	
	transforms (Compose) – Transforms.

	seg_pair (dict) – Segmentation pair (input, gt and metadata).

	index (int) – Batch index of the seg_pair.

	
bounding_box_prior(fname_mask, metadata, slice_axis)

	Computes prior steps to a model requiring bounding box crop. This includes loading a mask of the ROI, orienting the
given mask into the following dimensions: (height, width, depth), extracting the bounding boxes and storing the
information in the metadata.

	Parameters

	
	fname_mask (str) – Filename containing the mask of the ROI

	metadata (dict) – Dictionary containing the image metadata

	slice_axis (int) – Slice axis (0: sagittal, 1: coronal, 2: axial)

	
compute_bb_statistics(bounding_box_path)

	Measures min, max and average, height, width, depth and volume of bounding boxes from a json file

	Parameters

	bounding_box_path (string) – Path to json file.

	
generate_bounding_box_file(subject_list, model_path, log_dir, gpu_number=0, slice_axis=0, contrast_lst=None, keep_largest_only=True, safety_factor=None)

	Creates json file containing the bounding box dimension for each images. The file has the following format:
{“path/to/img.nii.gz”: [[x1_min, x1_max, y1_min, y1_max, z1_min, z1_max],
[x2_min, x2_max, y2_min, y2_max, z2_min, z2_max]]}
where each list represents the coordinates of an object on the image (2 instance of a given object in this example).

	Parameters

	
	subject_list (list) – List of all subjects in the BIDS directory.

	model_path (string) – Path to object detection model.

	log_dir (string) – Log directory.

	gpu_number (int) – If available, GPU number.

	slice_axis (int) – Slice axis (0: sagittal, 1: coronal, 2: axial).

	contrast_lst (list) – Contrasts.

	keep_largest_only (bool) – Boolean representing if only the largest object of the prediction is kept.

	safety_factor (list or tuple) – Factors to multiply each dimension of the bounding box.

	Returns

	Dictionary containing bounding boxes related to their image.

	Return type

	dict

	
get_bounding_boxes(mask)

	Generates a 3D bounding box around a given mask.
:param mask: Mask of the ROI.
:type mask: Numpy array

	Returns

	Bounding box coordinate (x_min, x_max, y_min, y_max, z_min, z_max).

	Return type

	list

	
load_bounding_boxes(object_detection_params, subjects, slice_axis, constrast_lst)

	Verifies if bounding_box.json exists in the log directory, if so loads the data, else generates the file if a
valid detection model path exists.

	Parameters

	
	object_detection_params (dict) – Object detection parameters.

	subjects (list) – List of all subjects in the BIDS directory.

	slice_axis (int) – Slice axis (0: sagittal, 1: coronal, 2: axial).

	constrast_lst (list) – Contrasts.

	Returns

	bounding boxes for every subject in BIDS directory

	Return type

	dict

	
resample_bounding_box(metadata, transform)

	Resample bounding box.

	Parameters

	
	metadata (dict) – Dictionary containing the metadata to be modified with the resampled coordinates.

	transform (Compose) – Transformations possibly containing the resample params.

	
resize_to_multiple(shape, multiple, length)

	Modify a given shape so each dimension is a multiple of a given number. This is used to avoid dimension mismatch
with patch training. The return shape is always larger then the initial shape (no cropping).

	Parameters

	
	shape (tuple or list) – Initial shape to be modified.

	multiple (tuple or list) – Multiple for each dimension.

	length (tuple or list) – Patch length.

	Returns

	New dimensions.

	Return type

	list

	
verify_metadata(metadata, has_bounding_box)

	Validates across all metadata that the ‘bounding_box’ param is present.

	Parameters

	
	metadata (dict) – Image metadata.

	has_bounding_box (bool) – If ‘bounding_box’ is present across all metadata, True, else False.

	Returns

	Boolean indicating if ‘bounding_box’ is present across all metadata.

	Return type

	bool

Evaluation API

	
class Evaluation3DMetrics(data_pred, data_gt, dim_lst, params=None)

	Bases: object

Computes 3D evaluation metrics.

	Parameters

	
	data_pred (ndarray) – Network prediction mask.

	data_gt (ndarray) – Ground-truth mask.

	dim_lst (list) – Resolution (mm) along each dimension.

	params (dict) – Evaluation parameters.

	Attributes

	
	data_pred (ndarray) – Network prediction mask.

	data_gt (ndarray) – Ground-truth mask.

	n_classes (int) – Number of classes.

	px (float) – Resolution (mm) along the first axis.

	py (float) – Resolution (mm) along the second axis.

	pz (float) – Resolution (mm) along the third axis.

	bin_struct (ndarray) – Binary structure.

	size_min (int) – Minimum size of objects. Objects that are smaller than this limit can be removed if
“removeSmall” is in params.

	overlap_vox (int) – A prediction and ground-truth are considered as overlapping if they overlap for at least this
amount of voxels.

	overlap_ratio (float) – A prediction and ground-truth are considered as overlapping if they overlap for at least
this portion of their volumes.

	data_pred_label (ndarray) – Network prediction mask that is labeled, ie each object is filled with a different
value.

	data_gt_label (ndarray) – Ground-truth mask that is labeled, ie each object is filled with a different
value.

	n_pred (int) – Number of objects in the network prediction mask.

	n_gt (int) – Number of objects in the ground-truth mask.

	data_painted (ndarray) – Mask where each predicted object is labeled depending on whether it is a TP or FP.

	
__init__(data_pred, data_gt, dim_lst, params=None)

	Initialize self. See help(type(self)) for accurate signature.

	
get_avd()

	Absolute volume difference.

The volume is here defined by the physical volume, in mm3, of the non-zero voxels of a given mask.
Absolute volume difference equals the absolute value of the Relative Volume Difference.
Optimal value is zero.

	
get_lfdr(label_size=None, class_idx=0)

	Lesion False Detection Rate / 1 - Precision.

	Parameters

	
	label_size (int) – Size of label.

	class_idx (int) – Label index. If monolabel 0, else ranges from 0 to number of output channels - 1.

Note: computed only if n_obj >= 1.

	
get_ltpr(label_size=None, class_idx=0)

	Lesion True Positive Rate / Recall / Sensitivity.

	Parameters

	
	label_size (int) – Size of label.

	class_idx (int) – Label index. If monolabel 0, else ranges from 0 to number of output channels - 1.

Note: computed only if n_obj >= 1.

	
get_rvd()

	Relative volume difference.

The volume is here defined by the physical volume, in mm3, of the non-zero voxels of a given mask.
Relative volume difference equals the difference between the ground-truth and prediction volumes, divided by the
ground-truth volume.
Optimal value is zero. Negative value indicates over-segmentation, while positive value indicates
under-segmentation.

	
get_vol(data)

	Get volume.

	
label_per_size(data)

	Get data with labels corresponding to label size.

	Parameters

	data (ndarray) – Input data.

	Returns

	ndarray

	
remove_small_objects(data)

	Removes all unconnected objects smaller than the minimum specified size.

	Parameters

	data (ndarray) – Input data.

	Returns

	Array with small objects.

	Return type

	ndarray

	
run_eval()

	Stores evaluation results in dictionary

	Returns

	dictionary containing evaluation results, data with each object painted a different color

	Return type

	dict, ndarray

	
evaluate(bids_path, log_directory, path_preds, target_suffix, eval_params)

	Evaluate predictions from inference step.

	Parameters

	
	bids_path (str) – Folder where raw data is stored.

	log_directory (str) – Folder where the output folder “results_eval” is be created.

	path_preds (str) – Folder where model predictions were saved

	target_suffix (list) – List of suffixes that indicates the target mask(s).

	eval_params (dict) – Evaluation parameters.

	Returns

	results for each image.

	Return type

	pd.Dataframe

Losses API

	
class AdapWingLoss(theta=0.5, alpha=2.1, omega=14, epsilon=1)

	Bases: torch.nn.modules.module.Module

Adaptive Wing loss
Used for heatmap ground truth.

	..seealso::

	Wang, Xinyao, Liefeng Bo, and Li Fuxin. “Adaptive wing loss for robust face alignment via heatmap regression.”
Proceedings of the IEEE International Conference on Computer Vision. 2019.

	Parameters

	
	theta (float) – Threshold between linear and non linear loss.

	alpha (float) – Used to adapt loss shape to input shape and make loss smooth at 0 (background).

	needs to be slightly above 2 to maintain ideal properties. (It) –

	omega (float) – Multiplicating factor for non linear part of the loss.

	epsilon (float) – factor to avoid gradient explosion. It must not be too small

	
__init__(theta=0.5, alpha=2.1, omega=14, epsilon=1)

	Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
forward(input, target)

	Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

	
class BinaryCrossEntropyLoss

	Bases: torch.nn.modules.module.Module

(BinaryCrossEntropyLoss [https://pytorch.org/docs/master/generated/torch.nn.BCELoss.html#bceloss]).

	Attributes

	loss_fct (BCELoss) – Binary cross entropy loss function from torch library.

	
__init__()

	Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
forward(prediction, target)

	Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

	
class DiceLoss(smooth=1.0)

	Bases: torch.nn.modules.module.Module

DiceLoss.

See also

Milletari, Fausto, Nassir Navab, and Seyed-Ahmad Ahmadi. “V-net: Fully convolutional neural networks for
volumetric medical image segmentation.” 2016 fourth international conference on 3D vision (3DV). IEEE, 2016.

	Parameters

	smooth (float) – Value to avoid division by zero when images and predictions are empty.

	Attributes

	smooth (float) – Value to avoid division by zero when images and predictions are empty.

	
__init__(smooth=1.0)

	Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
forward(prediction, target)

	Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

	
class FocalDiceLoss(beta=1, gamma=2, alpha=0.25)

	Bases: torch.nn.modules.module.Module

FocalDiceLoss.

See also

Wong, Ken CL, et al. “3D segmentation with exponential logarithmic loss for highly unbalanced object sizes.”
International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2018.

	Parameters

	
	beta (float) – Value from 0 to 1, indicating the weight of the dice loss.

	gamma (float) – Value from 0 to 5, Control between easy background and hard ROI
training examples. If set to 0, equivalent to cross-entropy.

	alpha (float) – Value from 0 to 1, usually corresponding to the inverse of class frequency to address class
imbalance.

	Attributes

	
	beta (float) – Value from 0 to 1, indicating the weight of the dice loss.

	gamma (float) – Value from 0 to 5, Control between easy background and hard ROI
training examples. If set to 0, equivalent to cross-entropy.

	alpha (float) – Value from 0 to 1, usually corresponding to the inverse of class frequency to address class
imbalance.

	
__init__(beta=1, gamma=2, alpha=0.25)

	Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
forward(input, target)

	Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

	
class FocalLoss(gamma=2, alpha=0.25, eps=1e-07)

	Bases: torch.nn.modules.module.Module

FocalLoss.

See also

Lin, Tsung-Yi, et al. “Focal loss for dense object detection.”
Proceedings of the IEEE international conference on computer vision. 2017.

	Parameters

	
	gamma (float) – Value from 0 to 5, Control between easy background and hard ROI
training examples. If set to 0, equivalent to cross-entropy.

	alpha (float) – Value from 0 to 1, usually corresponding to the inverse of class frequency to address class
imbalance.

	eps (float) – Epsilon to avoid division by zero.

	Attributes

	
	gamma (float) – Value from 0 to 5, Control between easy background and hard ROI
training examples. If set to 0, equivalent to cross-entropy.

	alpha (float) – Value from 0 to 1, usually corresponding to the inverse of class frequency to address class
imbalance.

	eps (float) – Epsilon to avoid division by zero.

	
__init__(gamma=2, alpha=0.25, eps=1e-07)

	Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
forward(input, target)

	Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

	
class FocalTverskyLoss(alpha=0.7, beta=0.3, gamma=1.33, smooth=1.0)

	Bases: ivadomed.losses.TverskyLoss

Focal Tversky Loss.

See also

Abraham, Nabila, and Naimul Mefraz Khan. “A novel focal tversky loss function with improved attention u-net for
lesion segmentation.” 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). IEEE, 2019.

	Parameters

	
	alpha (float) – Weight of false positive voxels.

	beta (float) – Weight of false negative voxels.

	gamma (float) – Typically between 1 and 3. Control between easy background and hard ROI training examples.

	smooth (float) – Epsilon to avoid division by zero, when both Numerator and Denominator of Tversky are zeros.

	Attributes

	gamma (float) – Typically between 1 and 3. Control between easy background and hard ROI training examples.

Notes

	setting alpha=beta=0.5 and gamma=1: Equivalent to DiceLoss.

	default parameters were suggested by https://arxiv.org/pdf/1810.07842.pdf .

	
__init__(alpha=0.7, beta=0.3, gamma=1.33, smooth=1.0)

	Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
forward(input, target)

	Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

	
class GeneralizedDiceLoss(epsilon=1e-05, include_background=True)

	Bases: torch.nn.modules.module.Module

GeneralizedDiceLoss.

See also

Sudre, Carole H., et al. “Generalised dice overlap as a deep learning loss function for highly unbalanced
segmentations.” Deep learning in medical image analysis and multimodal learning for clinical decision support.
Springer, Cham, 2017. 240-248.

	Parameters

	
	epsilon (float) – Epsilon to avoid division by zero.

	include_background (float) – If True, then an extra channel is added, which represents the background class.

	Attributes

	
	epsilon (float) – Epsilon to avoid division by zero.

	include_background (float) – If True, then an extra channel is added, which represents the background class.

	
__init__(epsilon=1e-05, include_background=True)

	Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
forward(input, target)

	Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

	
class L2loss

	Bases: torch.nn.modules.module.Module

Euclidean loss also known as L2 loss. Compute the sum of the squared difference between the two images.

	
__init__()

	Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
forward(input, target)

	Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

	
class LossCombination(losses_list, params_list=None)

	Bases: torch.nn.modules.module.Module

Loss that sums other implemented losses.

	Parameters

	
	losses_list (list) – list of losses that will be summed. Elements should be string.

	params_list (list) – list of params for the losses, contain None or dictionnary definition of params for the loss

	same index. If no params list is given all default parameter will be used. (at) –

	losses_list = ["L2loss","DiceLoss"] ((e.g.,) – params_list = [None,{“param1:0.5”}])

	Returns

	sum of losses computed on (input,target) with the params

	Return type

	tensor

	
__init__(losses_list, params_list=None)

	Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
forward(input, target)

	Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

	
class MultiClassDiceLoss(classes_of_interest=None)

	Bases: torch.nn.modules.module.Module

Multi-class Dice Loss.

Inspired from https://arxiv.org/pdf/1802.10508.

	Parameters

	classes_of_interest (list) – List containing the index of a class which its dice will be added to the loss.
If is None all classes are considered.

	Attributes

	
	classes_of_interest (list) – List containing the index of a class which its dice will be added to the loss.
If is None all classes are considered.

	dice_loss (DiceLoss) – Class computing the Dice loss.

	
__init__(classes_of_interest=None)

	Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
forward(prediction, target)

	Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

	
class TverskyLoss(alpha=0.7, beta=0.3, smooth=1.0)

	Bases: torch.nn.modules.module.Module

Tversky Loss.

See also

Salehi, Seyed Sadegh Mohseni, Deniz Erdogmus, and Ali Gholipour. “Tversky loss function for image segmentation
using 3D fully convolutional deep networks.” International Workshop on Machine Learning in Medical Imaging.
Springer, Cham, 2017.

	Parameters

	
	alpha (float) – Weight of false positive voxels.

	beta (float) – Weight of false negative voxels.

	smooth (float) – Epsilon to avoid division by zero, when both Numerator and Denominator of Tversky are zeros.

	Attributes

	
	alpha (float) – Weight of false positive voxels.

	beta (float) – Weight of false negative voxels.

	smooth (float) – Epsilon to avoid division by zero, when both Numerator and Denominator of Tversky are zeros.

Notes

	setting alpha=beta=0.5: Equivalent to DiceLoss.

	default parameters were suggested by https://arxiv.org/pdf/1706.05721.pdf .

	
__init__(alpha=0.7, beta=0.3, smooth=1.0)

	Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
forward(input, target)

	Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

	
tversky_index(y_pred, y_true)

	Compute Tversky index.

	Parameters

	
	y_pred (torch Tensor) – Prediction.

	y_true (torch Tensor) – Target.

	Returns

	Tversky index.

	Return type

	float

Main API

	
run_main(config=None)

	Run main command.

This function is central in the ivadomed project as training / testing / evaluation commands are run via this
function. All the process parameters are defined in the config.

	Parameters

	config (dict) – Dictionary containing all parameters that are needed for a given process. See
Configuration File for more details.

	Returns

	Returns floats: best loss score for both training and validation.
If “test” command: Returns dict: of averaged metrics computed on the testing sub dataset.
If “eval” command: Returns a pandas Dataframe: of metrics computed for each subject of the testing sub dataset.

	Return type

	If “train” command

Metrics API

	
class MetricManager(metric_fns)

	Bases: object

Computes specified metrics and stores them in a dictionary.

	Parameters

	metric_fns (list) – List of metric functions.

	Attributes

	
	metric_fns (list) – List of metric functions.

	result_dict (dict) – Dictionary storing metrics.

	num_samples (int) – Number of samples.

	
__call__(prediction, ground_truth)

	Call self as a function.

	
__init__(metric_fns)

	Initialize self. See help(type(self)) for accurate signature.

	
accuracy_score(prediction, groundtruth, err_value=0.0)

	Accuracy.

Accuracy equals the number of true positive and true negative voxels divided by the total number of voxels.
True positive/negative and false positive/negative values are computed on soft masks, see "numeric_score".

	Parameters

	
	prediction (ndarray) – First array.

	groundtruth (ndarray) – Second array.

	Returns

	Accuracy.

	Return type

	float

	
dice_score(im1, im2, empty_score=nan)

	Computes the Dice coefficient between im1 and im2.

Compute a soft Dice coefficient between im1 and im2, ie equals twice the sum of the two masks product, divided by
the sum of each mask sum.
If both images are empty, then it returns empty_score.

	Parameters

	
	im1 (ndarray) – First array.

	im2 (ndarray) – Second array.

	empty_score (float) – Returned value if both input array are empty.

	Returns

	Dice coefficient.

	Return type

	float

	
hausdorff_score(prediction, groundtruth)

	Compute the directed Hausdorff distance between two N-D arrays.

	Parameters

	
	prediction (ndarray) – First array.

	groundtruth (ndarray) – Second array.

	Returns

	Hausdorff distance.

	Return type

	float

	
intersection_over_union(prediction, groundtruth, err_value=0.0)

	Intersection of two (soft) arrays over their union (IoU).

	Parameters

	
	prediction (ndarray) – First array.

	groundtruth (ndarray) – Second array.

	err_value (float) – Value returned in case of error.

	Returns

	IoU.

	Return type

	float

	
mse(im1, im2)

	Compute the Mean Squared Error.

Compute the Mean Squared Error between the two images, i.e. sum of the squared difference.

	Parameters

	
	im1 (ndarray) – First array.

	im2 (ndarray) – Second array.

	Returns

	Mean Squared Error.

	Return type

	float

	
multi_class_dice_score(im1, im2)

	Dice score for multi-label images.

Multi-class Dice score equals the average of the Dice score for each class.
The first dimension of the input arrays is assumed to represent the classes.

	Parameters

	
	im1 (ndarray) – First array.

	im2 (ndarray) – Second array.

	Returns

	Multi-class dice.

	Return type

	float

	
numeric_score(prediction, groundtruth)

	Computation of statistical numerical scores:

	FP = Soft False Positives

	FN = Soft False Negatives

	TP = Soft True Positives

	TN = Soft True Negatives

	Robust to hard or soft input masks. For example::

	prediction=np.asarray([0, 0.5, 1])
groundtruth=np.asarray([0, 1, 1])
Leads to FP = 1.5

Note: It assumes input values are between 0 and 1.

	Parameters

	
	prediction (ndarray) – Binary prediction.

	groundtruth (ndarray) – Binary groundtruth.

	Returns

	FP, FN, TP, TN

	Return type

	float, float, float, float

	
precision_score(prediction, groundtruth, err_value=0.0)

	Positive predictive value (PPV).

Precision equals the number of true positive voxels divided by the sum of true and false positive voxels.
True and false positives are computed on soft masks, see "numeric_score".

	Parameters

	
	prediction (ndarray) – First array.

	groundtruth (ndarray) – Second array.

	err_value (float) – Value returned in case of error.

	Returns

	Precision score.

	Return type

	float

	
recall_score(prediction, groundtruth, err_value=0.0)

	True positive rate (TPR).

Recall equals the number of true positive voxels divided by the sum of true positive and false negative voxels.
True positive and false negative values are computed on soft masks, see "numeric_score".

	Parameters

	
	prediction (ndarray) – First array.

	groundtruth (ndarray) – Second array.

	err_value (float) – Value returned in case of error.

	Returns

	Recall score.

	Return type

	float

	
specificity_score(prediction, groundtruth, err_value=0.0)

	True negative rate (TNR).

Specificity equals the number of true negative voxels divided by the sum of true negative and false positive voxels.
True negative and false positive values are computed on soft masks, see "numeric_score".

	Parameters

	
	prediction (ndarray) – First array.

	groundtruth (ndarray) – Second array.

	err_value (float) – Value returned in case of error.

	Returns

	Specificity score.

	Return type

	float

Postprocessing API

	
binarize_with_low_threshold(wrapped)

	Decorator to set low values (< 0.001) to 0.

	Parameters

	wrapped – Given function.

	Returns

	Functions’ return.

	
coordinate_from_heatmap(nifti_image, thresh=0.3)

	Retrieve coordinates of local maxima in a soft segmentation.
:param nifti_image: nifti image of the soft segmentation.
:type nifti_image: nibabel object
:param thresh: Relative threshold for local maxima, i.e., after normalizing
:type thresh: float
:param the min and max between 0 and 1, respectively.:

	Returns

	A list of computed coordinates found by local maximum. each element will be a list composed of
[x, y, z]

	Return type

	list

	
fill_holes(predictions, structure=(3, 3, 3))

	Fill holes in the predictions using a given structuring element.
Note: This function only works for binary segmentation.

	Parameters

	
	predictions (ndarray or nibabel object) – Input binary segmentation. Image could be 2D or 3D.

	structure (tuple of integers) – Structuring element, number of ints equals
number of dimensions in the input array.

	Returns

	ndrray or nibabel (same object as the input). Output type is int.

	
keep_largest_object(predictions)

	Keep the largest connected object from the input array (2D or 3D).

	Parameters

	predictions (ndarray or nibabel object) – Input segmentation. Image could be 2D or 3D.

	Returns

	ndarray or nibabel (same object as the input).

	
keep_largest_object_per_slice(predictions, axis=2)

	Keep the largest connected object for each 2D slice, along a specified axis.

	Parameters

	
	predictions (ndarray or nibabel object) – Input segmentation. Image could be 2D or 3D.

	axis (int) – 2D slices are extracted along this axis.

	Returns

	ndarray or nibabel (same object as the input).

	
label_file_from_coordinates(nifti_image, coord_list)

	Creates a nifti object with single-voxel labels. Each label has a value of 1. The nifti object as the same
orientation as the input.
:param nifti_image: Path to the image which affine matrix will be used to generate a new image with
:type nifti_image: nibabel object
:param labels.:
:param coord_list: list of coordinates. Each element is [x, y, z]. Orientation should be the same as the image
:type coord_list: list

	Returns

	A nifti object containing the singe-voxel label of value 1. The matrix will be the same size as
nifti_image.

	Return type

	nib_pred

	
mask_predictions(predictions, mask_binary)

	Mask predictions using a binary mask: sets everything outside the mask to zero.

	Parameters

	
	predictions (ndarray or nibabel object) – Input binary segmentation. Image could be 2D or 3D.

	mask_binary (ndarray) – Numpy array with the same shape as predictions, containing only zeros or ones.

	Returns

	ndarray or nibabel (same object as the input).

	
multilabel_capable(wrapped)

	Decorator to make a given function compatible multilabel images.

	Parameters

	wrapped – Given function.

	Returns

	Functions’ return.

	
nifti_capable(wrapped)

	Decorator to make a given function compatible with input being Nifti objects.

	Parameters

	wrapped – Given function.

	Returns

	Functions’ return.

	
threshold_predictions(predictions, thr=0.5)

	Threshold a soft (i.e. not binary) array of predictions given a threshold value, and returns
a binary array.

	Parameters

	
	predictions (ndarray or nibabel object) – Image to binarize.

	thr (float) – Threshold value: voxels with a value < to thr are assigned 0 as value, 1
otherwise.

	Returns

	ndarray or nibabel (same object as the input) containing only zeros or ones. Output type is int.

	Return type

	ndarray

Testing API

	
run_inference(test_loader, model, model_params, testing_params, ofolder, cuda_available, i_monte_carlo=None)

	Run inference on the test data and save results as nibabel files.

	Parameters

	
	test_loader (torch DataLoader) –

	model (nn.Module) –

	model_params (dict) –

	testing_params (dict) –

	ofolder (str) – Folder where predictions are saved.

	cuda_available (bool) – If True, CUDA is available.

	i_monte_carlo (int) – i_th Monte Carlo iteration.

	Returns

	Prediction, Ground-truth of shape n_sample, n_label, h, w, d.

	Return type

	ndarray, ndarray

	
test(model_params, dataset_test, testing_params, log_directory, device, cuda_available=True, metric_fns=None)

	Main command to test the network.

	Parameters

	
	model_params (dict) – Model’s parameters.

	dataset_test (imed_loader) – Testing dataset.

	testing_params (dict) – Testing parameters.

	log_directory (str) – Folder where predictions are saved.

	device (torch.device) – Indicates the CPU or GPU ID.

	cuda_available (bool) – If True, CUDA is available.

	metric_fns (list) – List of metrics, see ivadomed.metrics.

	Returns

	result metrics.

	Return type

	dict

Training API

	
get_loss_function(params)

	Get Loss function.

	Parameters

	params (dict) – See ivadomed.losses.

	Returns

	imed_losses object.

	
get_metadata(metadata, model_params)

	Get metadata during batch loop.

	Parameters

	
	metadata (batch) –

	model_params (dict) –

	Returns

	If FiLMedUnet, Returns a list of metadata, that have been transformed by the One Hot Encoder.
If HeMISUnet, Returns a numpy array where each row represents a sample and each column represents a contrast.

	
get_sampler(ds, balance_bool)

	Get sampler.

	Parameters

	
	ds (BidsDataset) – BidsDataset object.

	balance_bool (bool) – If True, a sampler is generated that balance positive and negative samples.

	Returns

	Returns BalancedSampler, Bool: Sampler and boolean for shuffling (set to False).
Otherwise: Returns None and True.

	Return type

	If balance_bool is True

	
get_scheduler(params, optimizer, num_epochs=0)

	Get scheduler.

	Parameters

	
	params (dict) – scheduler parameters, see PyTorch documentation [https://pytorch.org/docs/stable/optim.html]

	optimizer (torch optim) –

	num_epochs (int) – number of epochs.

	Returns

	torch.optim, bool, which indicates if the scheduler is updated for each batch (True), or for each epoch (False).

	
save_film_params(gammas, betas, contrasts, depth, ofolder)

	Save FiLM params as npy files.

These parameters can be further used for visualisation purposes. They are saved in the ofolder with .npy format.

	Parameters

	
	gammas (dict) –

	betas (dict) –

	contrasts (list) – list of the batch sample’s contrasts (eg T2w, T1w)

	depth (int) –

	ofolder (str) –

	
store_film_params(gammas, betas, contrasts, metadata, model, film_layers, depth)

	Store FiLM params.

	Parameters

	
	gammas (dict) –

	betas (dict) –

	contrasts (list) – list of the batch sample’s contrasts (eg T2w, T1w)

	metadata (list) –

	model (nn.Module) –

	film_layers (list) –

	depth (int) –

	Returns

	gammas, betas

	Return type

	dict, dict

	
train(model_params, dataset_train, dataset_val, training_params, log_directory, device, cuda_available=True, metric_fns=None, debugging=False)

	Main command to train the network.

	Parameters

	
	model_params (dict) – Model’s parameters.

	dataset_train (imed_loader) – Training dataset.

	dataset_val (imed_loader) – Validation dataset.

	training_params (dict) –

	log_directory (str) – Folder where log files, best and final models are saved.

	device (str) – Indicates the CPU or GPU ID.

	cuda_available (bool) – If True, CUDA is available.

	metric_fns (list) – List of metrics, see ivadomed.metrics.

	debugging (bool) – If True, extended verbosity and intermediate outputs.

	Returns

	best_training_dice, best_training_loss, best_validation_dice, best_validation_loss.

	Return type

	float, float, float, float

Transformations API

	
class AdditiveGaussianNoise(mean=0.0, std=0.01)

	Bases: ivadomed.transforms.ImedTransform

Adds Gaussian Noise to images.

	Parameters

	
	mean (float) – Gaussian noise mean.

	std (float) – Gaussian noise standard deviation.

	
__call__(sample, metadata=None)

	Call self as a function.

	
__init__(mean=0.0, std=0.01)

	Initialize self. See help(type(self)) for accurate signature.

	
class BoundingBoxCrop(size)

	Bases: ivadomed.transforms.Crop

Crops image according to given bounding box.

	
__call__(sample, metadata)

	Call self as a function.

	
class CenterCrop(size)

	Bases: ivadomed.transforms.Crop

Make a centered crop of a specified size.

	
__call__(sample, metadata=None)

	Call self as a function.

	
class Clahe(clip_limit=3.0, kernel_size=(8, 8))

	Bases: ivadomed.transforms.ImedTransform

Applies Contrast Limited Adaptive Histogram Equalization for enhancing the local image contrast.

See also

Zuiderveld, Karel. “Contrast limited adaptive histogram equalization.” Graphics gems (1994): 474-485.

Default values are based on:

See also

Zheng, Qiao, et al. “3-D consistent and robust segmentation of cardiac images by deep learning with spatial
propagation.” IEEE transactions on medical imaging 37.9 (2018): 2137-2148.

	Parameters

	
	clip_limit (float) – Clipping limit, normalized between 0 and 1.

	kernel_size (tuple of int) – Defines the shape of contextual regions used in the algorithm. Length equals image

	dimension (ie 2 or 3 for 2D or 3D, respectively) –

	
__call__(sample, metadata=None)

	Call self as a function.

	
__init__(clip_limit=3.0, kernel_size=(8, 8))

	Initialize self. See help(type(self)) for accurate signature.

	
class Compose(dict_transforms, requires_undo=False)

	Bases: object

Composes transforms together.

Composes transforms together and split between images, GT and ROI.

	self.transform is a dict:

	
	keys: “im”, “gt” and “roi”

	values torchvision_transform.Compose objects.

	Attributes

	
	dict_transforms (dict) – Dictionary where the keys are the transform names
and the value their parameters.

	requires_undo (bool) – If True, does not include transforms which do not have an undo_transform
implemented yet.

	Parameters

	transform (dict) – Keys are “im”, “gt”, “roi” and values are torchvision_transforms.Compose of the
transformations of interest.

	
__call__(sample, metadata, data_type='im')

	Call self as a function.

	
__init__(dict_transforms, requires_undo=False)

	Initialize self. See help(type(self)) for accurate signature.

	
class Crop(size)

	Bases: ivadomed.transforms.ImedTransform

Crop data.

	Parameters

	size (tuple of int) – Size of the output sample. Tuple of size 2 if dealing with 2D samples, 3 with 3D samples.

	Attributes

	size (tuple of int) – Size of the output sample. Tuple of size 3.

	
__call__(sample, metadata)

	Call self as a function.

	
__init__(size)

	Initialize self. See help(type(self)) for accurate signature.

	
class CroppableArray

	Bases: numpy.ndarray

Zero padding slice past end of array in numpy.

Adapted From: https://stackoverflow.com/a/41155020/13306686

	
__getitem__(item)

	Return self[key].

	
class DilateGT(dilation_factor)

	Bases: ivadomed.transforms.ImedTransform

Randomly dilate a ground-truth tensor.

[image: _images/dilate-gt.png]

	Parameters

	
	dilation_factor (float) – Controls the number of dilation iterations. For each individual lesion, the number of

	iterations is computed as follows (dilation) – nb_it = int(round(dilation_factor * sqrt(lesion_area)))

	dilation_factor <= 0, then no dilation will be performed. (If) –

	
__call__(sample, metadata=None)

	Call self as a function.

	
__init__(dilation_factor)

	Initialize self. See help(type(self)) for accurate signature.

	
class ElasticTransform(alpha_range, sigma_range, p=0.1)

	Bases: ivadomed.transforms.ImedTransform

Applies elastic transformation.

See also

Simard, Patrice Y., David Steinkraus, and John C. Platt. “Best practices for convolutional neural networks
applied to visual document analysis.” Icdar. Vol. 3. No. 2003. 2003.

	Parameters

	
	alpha_range (tuple of floats) – Deformation coefficient. Length equals 2.

	sigma_range (tuple of floats) – Standard deviation. Length equals 2.

	
__call__(sample, metadata=None)

	Call self as a function.

	
__init__(alpha_range, sigma_range, p=0.1)

	Initialize self. See help(type(self)) for accurate signature.

	
class HistogramClipping(min_percentile=5.0, max_percentile=95.0)

	Bases: ivadomed.transforms.ImedTransform

Performs intensity clipping based on percentiles.

	Parameters

	
	min_percentile (float) – Between 0 and 100. Lower clipping limit.

	max_percentile (float) – Between 0 and 100. Higher clipping limit.

	
__call__(sample, metadata=None)

	Call self as a function.

	
__init__(min_percentile=5.0, max_percentile=95.0)

	Initialize self. See help(type(self)) for accurate signature.

	
class ImedTransform

	Bases: object

Base class for transforamtions.

	
__call__(sample, metadata=None)

	Call self as a function.

	
class NormalizeInstance

	Bases: ivadomed.transforms.ImedTransform

Normalize a tensor or an array image with mean and standard deviation estimated from the sample itself.

	
__call__(sample, metadata=None)

	Call self as a function.

	
class NumpyToTensor

	Bases: ivadomed.transforms.ImedTransform

Converts nd array to tensor object.

	
__call__(sample, metadata=None)

	Converts nd array to Tensor.

	
undo_transform(sample, metadata=None)

	Converts Tensor to nd array.

	
class ROICrop(size)

	Bases: ivadomed.transforms.Crop

Make a crop of a specified size around a Region of Interest (ROI).

	
__call__(sample, metadata=None)

	Call self as a function.

	
class RandomAffine(degrees=0, translate=None, scale=None)

	Bases: ivadomed.transforms.ImedTransform

Apply Random Affine transformation.

	Parameters

	
	degrees (float) – Positive float or list (or tuple) of length two. Angles in degrees. If only a float is
provided, then rotation angle is selected within the range [-degrees, degrees]. Otherwise, the list / tuple
defines this range.

	translate (list of float) – List of floats between 0 and 1, of length 2 or 3 depending on the sample shape (2D
or 3D). These floats defines the maximum range of translation along each axis.

	scale (list of float) – List of floats between 0 and 1, of length 2 or 3 depending on the sample shape (2D
or 3D). These floats defines the maximum range of scaling along each axis.

	Attributes

	
	degrees (tuple of floats)

	translate (list of float)

	scale (list of float)

	
__call__(sample, metadata=None)

	Call self as a function.

	
__init__(degrees=0, translate=None, scale=None)

	Initialize self. See help(type(self)) for accurate signature.

	
class RandomReverse

	Bases: ivadomed.transforms.ImedTransform

Make a randomized symmetric inversion of the different values of each dimensions.

	
__call__(sample, metadata=None)

	Call self as a function.

	
class RandomShiftIntensity(shift_range, prob=0.1)

	Bases: ivadomed.transforms.ImedTransform

Add a random intensity offset.

	Parameters

	
	shift_range (tuple of floats) – Tuple of length two. Specifies the range where the offset that is applied is
randomly selected from.

	prob (float) – Between 0 and 1. Probability of occurence of this transformation.

	
__call__(sample, metadata=None)

	Call self as a function.

	
__init__(shift_range, prob=0.1)

	Initialize self. See help(type(self)) for accurate signature.

	
class Resample(hspace, wspace, dspace=1.0)

	Bases: ivadomed.transforms.ImedTransform

Resample image to a given resolution.

	Parameters

	
	hspace (float) – Resolution along the first axis, in mm.

	wspace (float) – Resolution along the second axis, in mm.

	dspace (float) – Resolution along the third axis, in mm.

	interpolation_order (int) – Order of spline interpolation. Set to 0 for label data. Default=2.

	
__call__(sample, metadata=None)

	Resample to a given resolution, in millimeters.

	
__init__(hspace, wspace, dspace=1.0)

	Initialize self. See help(type(self)) for accurate signature.

	
undo_transform(sample, metadata=None)

	Resample to original resolution.

	
class UndoCompose(compose)

	Bases: object

Undo the Compose transformations.

Call the undo transformations in the inverse order than the “do transformations”.

	Attributes

	compose (torchvision_transforms.Compose)

	Parameters

	transforms (torchvision_transforms.Compose) –

	
__call__(sample, metadata, data_type='gt')

	Call self as a function.

	
__init__(compose)

	Initialize self. See help(type(self)) for accurate signature.

	
class UndoTransform(transform)

	Bases: object

Call undo transformation.

	Attributes

	transform (ImedTransform)

	Parameters

	transform (ImedTransform) –

	
__call__(sample)

	Call self as a function.

	
__init__(transform)

	Initialize self. See help(type(self)) for accurate signature.

	
apply_preprocessing_transforms(transforms, seg_pair, roi_pair=None)

	Applies preprocessing transforms to segmentation pair (input, gt and metadata).

	Parameters

	
	transforms (Compose) – Preprocessing transforms.

	seg_pair (dict) – Segmentation pair containing input and gt.

	roi_pair (dict) – Segementation pair containing input and roi.

	Returns

	Segmentation pair and roi pair.

	Return type

	tuple

	
get_preprocessing_transforms(transforms)

	Checks the transformations parameters and selects the transformations which are done during preprocessing only.

	Parameters

	transforms (dict) – Transformation dictionary.

	Returns

	Preprocessing transforms.

	Return type

	dict

	
get_subdatasets_transforms(transform_params)

	Get transformation parameters for each subdataset: training, validation and testing.

	Parameters

	transform_params (dict) –

	Returns

	Training, Validation and Testing transformations.

	Return type

	dict, dict, dict

	
multichannel_capable(wrapped)

	Decorator to make a given function compatible multichannel images.

	Parameters

	wrapped – Given function.

	Returns

	Functions’ return.

	
prepare_transforms(transform_dict, requires_undo=True)

	This function separates the preprocessing transforms from the others and generates the undo transforms related.

	Parameters

	
	transform_dict (dict) – Dictionary containing the transforms and there parameters.

	requires_undo (bool) – Boolean indicating if transforms can be undone.

	Returns

	
	transform lst containing the preprocessing transforms and regular transforms, UndoCompose

	object containing the transform to undo.

	Return type

	list, UndoCompose

	
two_dim_compatible(wrapped)

	Decorator to make a given function compatible 2D or 3D images.

	Parameters

	wrapped – Given function.

	Returns

	Functions’ return.

Utils API

	
class HookBasedFeatureExtractor(submodule, layername, upscale=False)

	Bases: torch.nn.modules.module.Module

This function extracts feature maps from given layer. Helpful to observe where the attention of the network is
focused.

https://github.com/ozan-oktay/Attention-Gated-Networks/tree/a96edb72622274f6705097d70cfaa7f2bf818a5a

	Parameters

	
	submodule (nn.Module) – Trained model.

	layername (str) – Name of the layer where features need to be extracted (layer of interest).

	upscale (bool) – If True output is rescaled to initial size.

	Attributes

	
	submodule (nn.Module) – Trained model.

	layername (str) – Name of the layer where features need to be extracted (layer of interest).

	outputs_size (list) – List of output sizes.

	outputs (list) – List of outputs containing the features of the given layer.

	inputs (list) – List of inputs.

	inputs_size (list) – List of input sizes.

	
__init__(submodule, layername, upscale=False)

	Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
forward(x)

	Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

	
class SliceFilter(filter_empty_mask=True, filter_empty_input=True)

	Bases: object

Filter 2D slices from dataset.

If a sample does not meet certain conditions, it is discarded from the dataset.

	Parameters

	
	filter_empty_mask (bool) – If True, samples where all voxel labels are zeros are discarded.

	filter_empty_input (bool) – If True, samples where all voxel intensities are zeros are discarded.

	Attributes

	
	filter_empty_mask (bool) – If True, samples where all voxel labels are zeros are discarded.

	filter_empty_input (bool) – If True, samples where all voxel intensities are zeros are discarded.

	
__call__(sample)

	Call self as a function.

	
__init__(filter_empty_mask=True, filter_empty_input=True)

	Initialize self. See help(type(self)) for accurate signature.

	
combine_predictions(fname_lst, fname_hard, fname_prob, thr=0.5)

	Combine predictions from Monte Carlo simulations.

	Combine predictions from Monte Carlo simulations and save the resulting as:

	
	fname_prob, a soft segmentation obtained by averaging the Monte Carlo samples.

	fname_hard, a hard segmentation obtained thresholding with thr.

	Parameters

	
	fname_lst (list of str) – List of the Monte Carlo samples.

	fname_hard (str) – Filename for the output hard segmentation.

	fname_prob (str) – Filename for the output soft segmentation.

	thr (float) – Between 0 and 1. Used to threshold the soft segmentation and generate the hard segmentation.

	
convert_labels_to_RGB(grid_img)

	Converts 2D images to RGB encoded images for display in tensorboard.

	Parameters

	grid_img (Tensor) – GT or prediction tensor with dimensions (batch size, number of classes, height, width).

	Returns

	RGB image with shape (height, width, 3).

	Return type

	tensor

	
cuda(input_var, cuda_available=True, non_blocking=False)

	Passes input_var to GPU.

	Parameters

	
	input_var (Tensor) – either a tensor or a list of tensors.

	cuda_available (bool) – If False, then return identity

	non_blocking (bool) –

	Returns

	Tensor

	
define_device(gpu_id)

	Define the device used for the process of interest.

	Parameters

	gpu_id (int) – GPU ID.

	Returns

	True if cuda is available.

	Return type

	Bool, device

	
display_selected_model_spec(params)

	Display in terminal the selected model and its parameters.

	Parameters

	params (dict) – Keys are param names and values are param values.

	
display_selected_transfoms(params, dataset_type)

	Display in terminal the selected transforms for a given dataset.

	Parameters

	
	params (dict) –

	dataset_type (list) – e.g. [‘testing’] or [‘training’, ‘validation’]

	
mixup(data, targets, alpha, debugging=False, ofolder=None)

	Compute the mixup data.

See also

Zhang, Hongyi, et al. “mixup: Beyond empirical risk minimization.”
arXiv preprint arXiv:1710.09412 (2017).

	Parameters

	
	data (Tensor) – Input images.

	targets (Tensor) – Input masks.

	alpha (float) – MixUp parameter.

	debugging (Bool) – If True, then samples of mixup are saved as png files.

	ofolder (str) – If debugging, output folder where “mixup” folder is created and samples are saved.

	Returns

	Mixed image, Mixed mask.

	Return type

	Tensor, Tensor

	
onnx_inference(model_path, inputs)

	Run ONNX inference

	Parameters

	
	model_path (str) – Path to the ONNX model.

	inputs (Tensor) – Batch of input image.

	Returns

	Network output.

	Return type

	Tensor

	
plot_transformed_sample(before, after, list_title=[], fname_out='', cmap='jet')

	Utils tool to plot sample before and after transform, for debugging.

	Parameters

	
	before (ndarray) – Sample before transform.

	after (ndarray) – Sample after transform.

	list_title (list of str) – Sub titles of before and after, resp.

	fname_out (str) – Output filename where the plot is saved if provided.

	cmap (str) – Matplotlib colour map.

	
pred_to_nib(data_lst, z_lst, fname_ref, fname_out, slice_axis, debug=False, kernel_dim='2d', bin_thr=0.5, discard_noise=True)

	Save the network predictions as nibabel object.

Based on the header of fname_ref image, it creates a nibabel object from the Network predictions (data_lst).

	Parameters

	
	data_lst (list of np arrays) – Predictions, either 2D slices either 3D patches.

	z_lst (list of ints) – Slice indexes to reconstruct a 3D volume for 2D slices.

	fname_ref (str) – Filename of the input image: its header is copied to the output nibabel object.

	fname_out (str) – If not None, then the generated nibabel object is saved with this filename.

	slice_axis (int) – Indicates the axis used for the 2D slice extraction: Sagittal: 0, Coronal: 1, Axial: 2.

	debug (bool) – If True, extended verbosity and intermediate outputs.

	kernel_dim (str) – Indicates whether the predictions were done on 2D or 3D patches. Choices: ‘2d’, ‘3d’.

	bin_thr (float) – If positive, then the segmentation is binarized with this given threshold. Otherwise, a soft
segmentation is output.

	discard_noise (bool) – If True, predictions that are lower than 0.01 are set to zero.

	Returns

	Object containing the Network prediction.

	Return type

	NibabelObject

	
reorient_image(arr, slice_axis, nib_ref, nib_ref_canonical)

	Reorient an image to match a reference image orientation.

It reorients a array to a given orientation and convert it to a nibabel object using the reference nibabel header.

	Parameters

	
	arr (ndarray) – Input array, array to re orient.

	slice_axis (int) – Indicates the axis used for the 2D slice extraction: Sagittal: 0, Coronal: 1, Axial: 2.

	nib_ref (nibabel) – Reference nibabel object, whose header is used.

	nib_ref_canonical (nibabel) – nib_ref that has been reoriented to canonical orientation (RAS).

	
run_uncertainty(ifolder)

	Compute uncertainty from model prediction.

This function loops across the model predictions (nifti masks) and estimates the uncertainty from the Monte Carlo
samples. Both voxel-wise and structure-wise uncertainty are estimates.

	Parameters

	ifolder (str) – Folder containing the Monte Carlo samples.

	
save_color_labels(gt_data, binarize, gt_filename, output_filename, slice_axis)

	Saves labels encoded in RGB in specified output file.

	Parameters

	
	gt_data (ndarray) – Input image with dimensions (Number of classes, height, width, depth).

	binarize (bool) – If True binarizes gt_data to 0 and 1 values, else soft values are kept.

	gt_filename (str) – GT path and filename.

	output_filename (str) – Name of the output file where the colored labels are saved.

	slice_axis (int) – Indicates the axis used to extract slices: “axial”: 2, “sagittal”: 0, “coronal”: 1.

	Returns

	RGB labels.

	Return type

	ndarray

	
save_feature_map(batch, layer_name, log_directory, model, test_input, slice_axis)

	Save model feature maps.

	Parameters

	
	batch (dict) –

	layer_name (str) –

	log_directory (str) – Output folder.

	model (nn.Module) – Network.

	test_input (Tensor) –

	slice_axis (int) – Indicates the axis used for the 2D slice extraction: Sagittal: 0, Coronal: 1, Axial: 2.

	
save_mixup_sample(ofolder, input_data, labeled_data, lambda_tensor)

	Save mixup samples as png files in a “mixup” folder.

	Parameters

	
	ofolder (str) – Output folder where “mixup” folder is created and samples are saved.

	input_data (Tensor) – Input image.

	labeled_data (Tensor) – Input masks.

	lambda_tensor (Tensor) –

	
save_onnx_model(model, inputs, model_path)

	Convert PyTorch model to ONNX model and save it as model_path.

	Parameters

	
	model (nn.Module) – PyTorch model.

	inputs (Tensor) – Tensor, used to inform shape and axes.

	model_path (str) – Output filename for the ONNX model.

	
save_tensorboard_img(writer, epoch, dataset_type, input_samples, gt_samples, preds, is_three_dim=False)

	Saves input images, gt and predictions in tensorboard.

	Parameters

	
	writer (SummaryWriter) – Tensorboard’s summary writer.

	epoch (int) – Epoch number.

	dataset_type (str) – Choice between Training or Validation.

	input_samples (Tensor) – Input images with shape (batch size, number of channel, height, width, depth) if 3D else
(batch size, number of channel, height, width)

	gt_samples (Tensor) – GT images with shape (batch size, number of channel, height, width, depth) if 3D else
(batch size, number of channel, height, width)

	preds (Tensor) – Model’s prediction with shape (batch size, number of channel, height, width, depth) if 3D else
(batch size, number of channel, height, width)

	is_three_dim (bool) – True if 3D input, else False.

	
segment_volume(folder_model, fname_image, fname_prior=None, gpu_number=0)

	Segment an image.

Segment an image (fname_image) using a pre-trained model (folder_model). If provided, a region of interest
(fname_roi) is used to crop the image prior to segment it.

	Parameters

	
	folder_model (str) – foldername which contains
(1) the model (‘folder_model/folder_model.pt’) to use
(2) its configuration file (‘folder_model/folder_model.json’) used for the training,
see https://github.com/neuropoly/ivadomed/wiki/configuration-file

	fname_image (str) – image filename (e.g. .nii.gz) to segment.

	fname_prior (str) – Image filename (e.g. .nii.gz) containing processing information (e.i. spinal cord
segmentation, spinal location or MS lesion classification)

e.g. spinal cord centerline, used to crop the image prior to segment it if provided.
The segmentation is not performed on the slices that are empty in this image.

	gpu_number (int) – Number representing gpu number if available.

	Returns

	Object containing the soft segmentation.

	Return type

	nibabelObject

	
structurewise_uncertainty(fname_lst, fname_hard, fname_unc_vox, fname_out)

	Estimate structure wise uncertainty.

Structure-wise uncertainty from N MC probability maps (fname_lst) and saved in fname_out with the following
suffixes:

	‘-cv.nii.gz’: coefficient of variation

	‘-iou.nii.gz’: intersection over union

	‘-avgUnc.nii.gz’: average voxel-wise uncertainty within the structure.

	Parameters

	
	fname_lst (list of str) – List of the Monte Carlo samples.

	fname_hard (str) – Filename of the hard segmentation, which is used to compute the avgUnc by providing a mask
of the structures.

	fname_unc_vox (str) – Filename of the voxel-wise uncertainty, which is used to compute the avgUnc.

	fname_out (str) – Output filename.

	
unstack_tensors(sample)

	Unstack tensors.

	Parameters

	sample (Tensor) –

	Returns

	list of Tensors.

	Return type

	list

	
volume_reconstruction(batch, pred, undo_transforms, smp_idx, volume=None, weight_matrix=None)

	Reconstructs volume prediction from subvolumes used during training
:param batch: Dictionary containing input, gt and metadata
:type batch: dict
:param pred: Subvolume prediction
:type pred: tensor
:param undo_transforms: Undo transforms so prediction match original image resolution and shap
:type undo_transforms: UndoCompose
:param smp_idx: Batch index
:type smp_idx: int
:param volume: Reconstructed volume
:type volume: tensor
:param weight_matrix: Weights containing the number of predictions for each voxel
:type weight_matrix: tensor

	Returns

	undone subvolume, metadata, boolean representing if its the last sample to
process, reconstructed volume, weight matrix

	Return type

	tensor, dict, bool, tensor, tensor

	
voxelwise_uncertainty(fname_lst, fname_out, eps=1e-05)

	Estimate voxel wise uncertainty.

Voxel-wise uncertainty is estimated as entropy over all N MC probability maps, and saved in fname_out.

	Parameters

	
	fname_lst (list of str) – List of the Monte Carlo samples.

	fname_out (str) – Output filename.

	eps (float) – Epsilon value to deal with np.log(0).

Maths API

	
gaussian_kernel(kernlen=10)

	Create a 2D gaussian kernel with user-defined size.

	Parameters

	kernlen (int) – size of kernel

	Returns

	a 2D array of size (kernlen,kernlen)

	Return type

	ndarray

	
heatmap_generation(image, kernel_size)

	Generate heatmap from image containing sing voxel label using
convolution with gaussian kernel
:param image: 2D array containing single voxel label
:type image: ndarray
:param kernel_size: size of gaussian kernel
:type kernel_size: int

	Returns

	2D array heatmap matching the label.

	Return type

	ndarray

	
rescale_values_array(arr, minv=0.0, maxv=1.0, dtype=<class 'numpy.float32'>)

	Rescale the values of numpy array arr to be from minv to maxv.

	Parameters

	
	arr (ndarry) – Array whose values will be rescaled.

	minv (float) – Minimum value of the output array.

	maxv (float) – Maximum value of the output array.

	dtype (type) – Cast array to this type before performing the rescaling.

 Python Module Index

 i

 		 	

 		
 i	

 	[image: -]
 	
 ivadomed	

 	
 	
 ivadomed.evaluation	

 	
 	
 ivadomed.loader.adaptative	

 	
 	
 ivadomed.loader.film	

 	
 	
 ivadomed.loader.loader	

 	
 	
 ivadomed.loader.utils	

 	
 	
 ivadomed.losses	

 	
 	
 ivadomed.main	

 	
 	
 ivadomed.maths	

 	
 	
 ivadomed.metrics	

 	
 	
 ivadomed.object_detection.utils	

 	
 	
 ivadomed.postprocessing	

 	
 	
 ivadomed.testing	

 	
 	
 ivadomed.training	

 	
 	
 ivadomed.transforms	

 	
 	
 ivadomed.utils	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V

_

 	
 	__call__() (AdditiveGaussianNoise method)

 	(BoundingBoxCrop method)

 	(CenterCrop method)

 	(Clahe method)

 	(Compose method)

 	(Crop method)

 	(DilateGT method)

 	(ElasticTransform method)

 	(HistogramClipping method)

 	(ImedTransform method)

 	(MetricManager method)

 	(NormalizeInstance method)

 	(NumpyToTensor method)

 	(ROICrop method)

 	(RandomAffine method)

 	(RandomReverse method)

 	(RandomShiftIntensity method)

 	(Resample method)

 	(SliceFilter method)

 	(UndoCompose method)

 	(UndoTransform method)

 	__getitem__() (CroppableArray method)

 	(HDF5Dataset method)

 	(MRI2DSegmentationDataset method)

 	(MRI3DSubVolumeSegmentationDataset method)

 	__init__() (AdapWingLoss method)

 	(AdditiveGaussianNoise method)

 	(BalancedSampler method)

 	(Bids3DDataset method)

 	(BidsDataset method)

 	(Bids_to_hdf5 method)

 	(BinaryCrossEntropyLoss method)

 	(Clahe method)

 	(Compose method)

 	(Countception method)

 	(Crop method)

 	(Dataframe method)

 	(DiceLoss method)

 	(DilateGT method)

 	(ElasticTransform method)

 	(Evaluation3DMetrics method)

 	(FiLMedUnet method)

 	(FocalDiceLoss method)

 	(FocalLoss method)

 	(FocalTverskyLoss method)

 	(GeneralizedDiceLoss method)

 	(HDF5Dataset method)

 	(HeMISUnet method)

 	(HistogramClipping method)

 	(HookBasedFeatureExtractor method)

 	(Kde_model method)

 	(L2loss method)

 	(LossCombination method)

 	(MRI2DSegmentationDataset method)

 	(MRI3DSubVolumeSegmentationDataset method)

 	(MetricManager method)

 	(MultiClassDiceLoss method)

 	(RandomAffine method)

 	(RandomShiftIntensity method)

 	(Resample method)

 	(SampleMetadata method)

 	(SegmentationPair method)

 	(SliceFilter method)

 	(TverskyLoss method)

 	(UNet3D method)

 	(UndoCompose method)

 	(UndoTransform method)

 	(Unet method)

 	
 	__len__() (HDF5Dataset method)

 	(MRI3DSubVolumeSegmentationDataset method)

A

 	
 	accuracy_score() (in module ivadomed.metrics)

 	AdapWingLoss (class in ivadomed.losses)

 	AdditiveGaussianNoise (class in ivadomed.transforms)

 	adjust_bb_size() (in module ivadomed.object_detection.utils)

 	
 	adjust_transforms() (in module ivadomed.object_detection.utils)

 	adjust_undo_transforms() (in module ivadomed.object_detection.utils)

 	apply_preprocessing_transforms() (in module ivadomed.transforms)

 	automate_training() (in module ivadomed.scripts.automate_training)

B

 	
 	BalancedSampler (class in ivadomed.loader.utils)

 	Bids3DDataset (class in ivadomed.loader.loader)

 	Bids_to_hdf5 (class in ivadomed.loader.adaptative)

 	BidsDataset (class in ivadomed.loader.loader)

 	
 	binarize_with_low_threshold() (in module ivadomed.postprocessing)

 	BinaryCrossEntropyLoss (class in ivadomed.losses)

 	bounding_box_prior() (in module ivadomed.object_detection.utils)

 	BoundingBoxCrop (class in ivadomed.transforms)

C

 	
 	CenterCrop (class in ivadomed.transforms)

 	check_isMRIparam() (in module ivadomed.loader.film)

 	Clahe (class in ivadomed.transforms)

 	clean() (Dataframe method)

 	clean_metadata() (in module ivadomed.loader.utils)

 	clustering_fit() (in module ivadomed.loader.film)

 	combine_predictions() (in module ivadomed.utils)

 	Compose (class in ivadomed.transforms)

 	compute_bb_statistics() (in module ivadomed.object_detection.utils)

 	
 	compute_statistics() (in module ivadomed.scripts.compare_models)

 	convert_labels_to_RGB() (in module ivadomed.utils)

 	convert_pytorch_to_onnx() (in module ivadomed.scripts.convert_to_onnx)

 	coordinate_from_heatmap() (in module ivadomed.postprocessing)

 	Countception (class in ivadomed.models)

 	create_df() (Dataframe method)

 	Crop (class in ivadomed.transforms)

 	CroppableArray (class in ivadomed.transforms)

 	cuda() (in module ivadomed.utils)

D

 	
 	Dataframe (class in ivadomed.loader.adaptative)

 	define_device() (in module ivadomed.utils)

 	dice_score() (in module ivadomed.metrics)

 	
 	DiceLoss (class in ivadomed.losses)

 	DilateGT (class in ivadomed.transforms)

 	display_selected_model_spec() (in module ivadomed.utils)

 	display_selected_transfoms() (in module ivadomed.utils)

E

 	
 	ElasticTransform (class in ivadomed.transforms)

 	evaluate() (in module ivadomed.evaluation)

 	
 	Evaluation3DMetrics (class in ivadomed.evaluation)

 	extract_mid_slice_and_convert_coordinates_to_heatmaps() (in module ivadomed.scripts.prepare_dataset_vertebral_labeling)

 	extract_small_dataset() (in module ivadomed.scripts.extract_small_dataset)

F

 	
 	fill_holes() (in module ivadomed.postprocessing)

 	FiLMedUnet (class in ivadomed.models)

 	filter_roi() (in module ivadomed.loader.utils)

 	FocalDiceLoss (class in ivadomed.losses)

 	FocalLoss (class in ivadomed.losses)

 	FocalTverskyLoss (class in ivadomed.losses)

 	forward() (AdapWingLoss method)

 	(BinaryCrossEntropyLoss method)

 	(Countception method)

 	(DiceLoss method)

 	(FiLMedUnet method)

 	(FocalDiceLoss method)

 	(FocalLoss method)

 	(FocalTverskyLoss method)

 	(GeneralizedDiceLoss method)

 	(HeMISUnet method)

 	(HookBasedFeatureExtractor method)

 	(L2loss method)

 	(LossCombination method)

 	(MultiClassDiceLoss method)

 	(TverskyLoss method)

 	(UNet3D method)

 	(Unet method)

G

 	
 	gaussian_kernel() (in module ivadomed.maths)

 	GeneralizedDiceLoss (class in ivadomed.losses)

 	generate_bounding_box_file() (in module ivadomed.object_detection.utils)

 	get_avd() (Evaluation3DMetrics method)

 	get_bounding_boxes() (in module ivadomed.object_detection.utils)

 	get_film_metadata_models() (in module ivadomed.loader.film)

 	get_lfdr() (Evaluation3DMetrics method)

 	get_loss_function() (in module ivadomed.training)

 	get_ltpr() (Evaluation3DMetrics method)

 	get_metadata() (in module ivadomed.training)

 	get_new_subject_split() (in module ivadomed.loader.utils)

 	
 	get_pair_data() (SegmentationPair method)

 	get_pair_metadata() (SegmentationPair method)

 	get_pair_shapes() (SegmentationPair method)

 	get_pair_slice() (SegmentationPair method)

 	get_preprocessing_transforms() (in module ivadomed.transforms)

 	get_rvd() (Evaluation3DMetrics method)

 	get_sampler() (in module ivadomed.training)

 	get_scheduler() (in module ivadomed.training)

 	get_subdatasets_subjects_list() (in module ivadomed.loader.utils)

 	get_subdatasets_transforms() (in module ivadomed.transforms)

 	get_vol() (Evaluation3DMetrics method)

H

 	
 	hausdorff_score() (in module ivadomed.metrics)

 	HDF5_to_Bids() (in module ivadomed.loader.adaptative)

 	HDF5Dataset (class in ivadomed.loader.adaptative)

 	
 	heatmap_generation() (in module ivadomed.maths)

 	HeMISUnet (class in ivadomed.models)

 	HistogramClipping (class in ivadomed.transforms)

 	HookBasedFeatureExtractor (class in ivadomed.utils)

I

 	
 	imed_collate() (in module ivadomed.loader.utils)

 	ImedTransform (class in ivadomed.transforms)

 	intersection_over_union() (in module ivadomed.metrics)

 	ivadomed.evaluation (module)

 	ivadomed.loader.adaptative (module)

 	ivadomed.loader.film (module)

 	ivadomed.loader.loader (module)

 	ivadomed.loader.utils (module)

 	ivadomed.losses (module)

 	
 	ivadomed.main (module)

 	ivadomed.maths (module)

 	ivadomed.metrics (module)

 	ivadomed.object_detection.utils (module)

 	ivadomed.postprocessing (module)

 	ivadomed.testing (module)

 	ivadomed.training (module)

 	ivadomed.transforms (module)

 	ivadomed.utils (module)

K

 	
 	Kde_model (class in ivadomed.loader.film)

 	
 	keep_largest_object() (in module ivadomed.postprocessing)

 	keep_largest_object_per_slice() (in module ivadomed.postprocessing)

L

 	
 	L2loss (class in ivadomed.losses)

 	label_file_from_coordinates() (in module ivadomed.postprocessing)

 	label_per_size() (Evaluation3DMetrics method)

 	load_bounding_boxes() (in module ivadomed.object_detection.utils)

 	
 	load_dataframe() (Dataframe method)

 	load_dataset() (in module ivadomed.loader.loader)

 	load_filenames() (MRI2DSegmentationDataset method)

 	load_into_ram() (HDF5Dataset method)

 	LossCombination (class in ivadomed.losses)

M

 	
 	mask_predictions() (in module ivadomed.postprocessing)

 	MetricManager (class in ivadomed.metrics)

 	mixup() (in module ivadomed.utils)

 	MRI2DSegmentationDataset (class in ivadomed.loader.loader)

 	MRI3DSubVolumeSegmentationDataset (class in ivadomed.loader.loader)

 	
 	mse() (in module ivadomed.metrics)

 	multi_class_dice_score() (in module ivadomed.metrics)

 	multichannel_capable() (in module ivadomed.transforms)

 	MultiClassDiceLoss (class in ivadomed.losses)

 	multilabel_capable() (in module ivadomed.postprocessing)

N

 	
 	nifti_capable() (in module ivadomed.postprocessing)

 	normalize_metadata() (in module ivadomed.loader.film)

 	
 	NormalizeInstance (class in ivadomed.transforms)

 	numeric_score() (in module ivadomed.metrics)

 	NumpyToTensor (class in ivadomed.transforms)

O

 	
 	onnx_inference() (in module ivadomed.utils)

 	orient_img_hwd() (in module ivadomed.loader.utils)

 	
 	orient_img_ras() (in module ivadomed.loader.utils)

 	orient_shapes_hwd() (in module ivadomed.loader.utils)

P

 	
 	plot_transformed_sample() (in module ivadomed.utils)

 	precision_score() (in module ivadomed.metrics)

 	
 	pred_to_nib() (in module ivadomed.utils)

 	prepare_transforms() (in module ivadomed.transforms)

R

 	
 	RandomAffine (class in ivadomed.transforms)

 	RandomReverse (class in ivadomed.transforms)

 	RandomShiftIntensity (class in ivadomed.transforms)

 	recall_score() (in module ivadomed.metrics)

 	remove_small_objects() (Evaluation3DMetrics method)

 	reorient_image() (in module ivadomed.utils)

 	Resample (class in ivadomed.transforms)

 	resample_bounding_box() (in module ivadomed.object_detection.utils)

 	
 	rescale_values_array() (in module ivadomed.maths)

 	resize_to_multiple() (in module ivadomed.object_detection.utils)

 	ROICrop (class in ivadomed.transforms)

 	run_eval() (Evaluation3DMetrics method)

 	run_inference() (in module ivadomed.testing)

 	run_main() (in module ivadomed.main)

 	run_uncertainty() (in module ivadomed.utils)

 	run_visualization() (in module ivadomed.scripts.visualize_transforms)

S

 	
 	SampleMetadata (class in ivadomed.loader.utils)

 	save() (Dataframe method)

 	save_color_labels() (in module ivadomed.utils)

 	save_feature_map() (in module ivadomed.utils)

 	save_film_params() (in module ivadomed.training)

 	save_mixup_sample() (in module ivadomed.utils)

 	save_onnx_model() (in module ivadomed.utils)

 	save_tensorboard_img() (in module ivadomed.utils)

 	
 	segment_volume() (in module ivadomed.utils)

 	SegmentationPair (class in ivadomed.loader.loader)

 	set_transform() (HDF5Dataset method)

 	shuffle() (Dataframe method)

 	SliceFilter (class in ivadomed.utils)

 	specificity_score() (in module ivadomed.metrics)

 	split_dataset() (in module ivadomed.loader.utils)

 	store_film_params() (in module ivadomed.training)

 	structurewise_uncertainty() (in module ivadomed.utils)

T

 	
 	test() (in module ivadomed.testing)

 	threshold_predictions() (in module ivadomed.postprocessing)

 	train() (in module ivadomed.training)

 	
 	tversky_index() (TverskyLoss method)

 	TverskyLoss (class in ivadomed.losses)

 	two_dim_compatible() (in module ivadomed.transforms)

U

 	
 	undo_transform() (NumpyToTensor method)

 	(Resample method)

 	UndoCompose (class in ivadomed.transforms)

 	UndoTransform (class in ivadomed.transforms)

 	
 	Unet (class in ivadomed.models)

 	UNet3D (class in ivadomed.models)

 	unstack_tensors() (in module ivadomed.utils)

 	update() (HDF5Dataset method)

 	update_metadata() (in module ivadomed.loader.utils)

V

 	
 	verify_metadata() (in module ivadomed.object_detection.utils)

 	
 	volume_reconstruction() (in module ivadomed.utils)

 	voxelwise_uncertainty() (in module ivadomed.utils)

 _static/file.png

_static/plus.png

_images/dilate-gt.png
o —— L9 porwswSay

_static/ivadomed_logo.png
vadameo

_static/minus.png

_images/mila_logo.png

_images/mixup.png

_images/film_figure.png
Image properties .
(e.g. contrast type) —> FiLM Generator (MLP)

Input
Metadata
(v, B) (v, B)
[9))
> >
© —_ @© —
- [9) - o
o > ol >
SH2IE| |52 8
= [0) = jo) -
slellzs||3]|2]]=
g T 9 T
c [
o) o]
(@] O
Output
Segmentation
Convolutional Neural Network
modulated by metadata

FiLM(x)=y(z) Ox+f(z)

x: Feature map z: conditioning input Y, B: FiLM parameters

FiLM: Visual Reasoning with a General Conditioning Laver. Perez et al. 2018

_static/up-pressed.png

_images/ivado_logo.png
IVADO

INSTITUT DE VALORISATION DES DONNEES

_static/up.png

_images/neuropoly_logo.png
NeuroPoly

Y Fa
@‘ ”
ha 4{‘9’/"

_images/sc_prediction.png
Image Ground truth Prediction

_images/transforms_gt.png
RoTCrop_slices.png

RoCrop_Randostrans ation_s1ices png|

ROICrop_RandomTranslation ElasticTransfon slices.png

nav.xhtml

 Table of Contents

 		
 ivadomed

 		
 Comparison with other projects

 		
 Technical features

 		
 Physics-informed network

 		
 Uncertainty measures

 		
 Two-step training scheme with class sampling

 		
 Mixup

 		
 Data augmentation on lesion labels

 		
 Network architectures

 		
 Loss functions

 		
 Installation

 		
 Install from release (recommended)

 		
 Install from source

 		
 Getting started

 		
 Configuration File

 		
 General parameters

 		
 command

 		
 gpu

 		
 log_directory

 		
 model_name

 		
 debugging

 		
 Loader parameters

 		
 bids_path

 		
 target_suffix

 		
 contrasts

 		
 multichannel

 		
 slice_axis

 		
 slice_filter

 		
 roi

 		
 soft_gt

 		
 Split dataset

 		
 fname_split

 		
 random_seed

 		
 method

 		
 train_fraction

 		
 test_fraction

 		
 center_test

 		
 Training parameters

 		
 batch_size

 		
 loss

 		
 training_time

 		
 scheduler

 		
 balance_samples

 		
 mixup_alpha

 		
 transfer_learning

 		
 Architecture

 		
 default_model (Mandatory)

 		
 FiLMedUnet (Optional)

 		
 HeMISUnet (Optional)

 		
 UNet3D (Optional)

 		
 Testing parameters

 		
 uncertainty

 		
 Cascaded Architecture Features

 		
 object_detection_params (Optional)

 		
 Transformations

 		
 Available transformations:

 		
 Examples

 		
 Data

 		
 Models

 		
 Unet

 		
 FiLMedUnet

 		
 HeMISUnet

 		
 UNet3D

 		
 Countception

 		
 Scripts

 		
 ivadomed_visualize_transforms

 		
 ivadomed_convert_to_onnx

 		
 ivadomed_automate_training

 		
 ivadomed_compare_models

 		
 ivadomed_prepare_dataset_vertebral_labeling

 		
 ivadomed_extract_small_dataset

 		
 One-class segmentation with 2D U-Net

 		
 Download dataset

 		
 Configuration file

 		
 Train model

 		
 Evaluate model

 		
 Contributing to ivadomed

 		
 Introduction

 		
 Opening an issue

 		
 Before Submitting a New Issue

 		
 Submitting an Issue

 		
 Opening a Branch

 		
 Developing

 		
 Conflicts

 		
 Code style

 		
 Documentation and docstrings

 		
 Testing

 		
 Licensing

 		
 Committing

 		
 Commit Titles

 		
 Commit Sequences

 		
 Submitting a Pull Request

 		
 PR Title

 		
 PR Body

 		
 Work in progress

 		
 Continuous Integration

 		
 Reviewers

 		
 Versioning

 		
 API Reference

 		
 Loader API

 		
 loader.adaptative

 		
 loader.film

 		
 loader.loader

 		
 loader.utils

 		
 Object Detection API

 		
 object_detection.utils

 		
 Evaluation API

 		
 Losses API

 		
 Main API

 		
 Metrics API

 		
 Postprocessing API

 		
 Testing API

 		
 Training API

 		
 Transformations API

 		
 Utils API

 		
 Maths API

_static/ajax-loader.gif

_images/transforms_im.png
RoTCrop._sLices.pug

RozCrop_RandomTranslation ElasticTransfon_slices. png

_images/uncertainty_measures.png
Preliminary results
Uncertainty measure using MC Dropout simulations

Hard seg. Soft seg. Uncertainty

Binary

*_pred.nii.gz *_soft.nii.gz *_unc-vox.niigz

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

