import copy
import functools
import math
import numbers
import random
from typing import Tuple
import numpy as np
import torch
from loguru import logger
from scipy.ndimage import zoom
from scipy.ndimage import gaussian_filter, map_coordinates, affine_transform, label, center_of_mass, binary_dilation, \
binary_fill_holes, binary_closing
from skimage.exposure import equalize_adapthist
from torchvision import transforms as torchvision_transforms
import torchio as tio
from ivadomed.loader import utils as imed_loader_utils
from ivadomed.keywords import TransformationKW, MetadataKW
[docs]def multichannel_capable(wrapped):
"""Decorator to make a given function compatible multichannel images.
Args:
wrapped: Given function.
Returns:
Functions' return.
"""
@functools.wraps(wrapped)
def wrapper(self, sample, metadata):
if isinstance(sample, list):
list_data, list_metadata = [], []
for s_cur, m_cur in zip(sample, metadata):
if len(list_metadata) > 0:
if not isinstance(list_metadata[-1], list):
imed_loader_utils.update_metadata([list_metadata[-1]], [m_cur])
else:
imed_loader_utils.update_metadata(list_metadata[-1], [m_cur])
# Run function for each sample of the list
data_cur, metadata_cur = wrapped(self, s_cur, m_cur)
list_data.append(data_cur)
list_metadata.append(metadata_cur)
return list_data, list_metadata
# If sample is None, then return a pair (None, None)
if sample is None:
return None, None
else:
return wrapped(self, sample, metadata)
return wrapper
[docs]def two_dim_compatible(wrapped):
"""Decorator to make a given function compatible 2D or 3D images.
Args:
wrapped: Given function.
Returns:
Functions' return.
"""
@functools.wraps(wrapped)
def wrapper(self, sample, metadata):
# Check if sample is 2D
if len(sample.shape) == 2:
# Add one dimension
sample = np.expand_dims(sample, axis=-1)
# Run transform
result_sample, result_metadata = wrapped(self, sample, metadata)
# Remove last dimension
return np.squeeze(result_sample, axis=-1), result_metadata
else:
return wrapped(self, sample, metadata)
return wrapper
[docs]class Compose(object):
"""Composes transforms together.
Composes transforms together and split between images, GT and ROI.
self.transform is a dict:
- keys: "im", "gt" and "roi"
- values torchvision_transform.Compose objects.
Attributes:
dict_transforms (dict): Dictionary where the keys are the transform names
and the value their parameters.
requires_undo (bool): If True, does not include transforms which do not have an undo_transform
implemented yet.
Args:
transform (dict): Keys are "im", "gt", "roi" and values are torchvision_transforms.Compose of the
transformations of interest.
"""
[docs] def __init__(self, dict_transforms, requires_undo=False):
list_tr_im, list_tr_gt, list_tr_roi = [], [], []
for transform in dict_transforms.keys():
parameters = dict_transforms[transform]
# Get list of data type
if "applied_to" in parameters:
list_applied_to = parameters["applied_to"]
else:
list_applied_to = ["im", "gt", "roi"]
# call transform
if transform in globals():
if transform == "NumpyToTensor":
continue
params_cur = {k: parameters[k] for k in parameters if k != "applied_to" and k != "preprocessing"}
transform_obj = globals()[transform](**params_cur)
else:
raise ValueError('ERROR: {} transform is not available. '
'Please check its compatibility with your model json file.'.format(transform))
# check if undo_transform method is implemented
if requires_undo:
if not hasattr(transform_obj, 'undo_transform'):
logger.info('{} transform not included since no undo_transform available for it.'.format(transform))
continue
if "im" in list_applied_to:
list_tr_im.append(transform_obj)
if "roi" in list_applied_to:
list_tr_roi.append(transform_obj)
if "gt" in list_applied_to:
list_tr_gt.append(transform_obj)
self.transform = {
"im": torchvision_transforms.Compose(list_tr_im),
"gt": torchvision_transforms.Compose(list_tr_gt),
"roi": torchvision_transforms.Compose(list_tr_roi)}
[docs] def __call__(self, sample, metadata, data_type='im', preprocessing=False):
if self.transform[data_type] is None or len(metadata) == 0:
# In case self.transform[data_type] is None
return None, None
else:
for tr in self.transform[data_type].transforms:
sample, metadata = tr(sample, metadata)
if not preprocessing:
numpy_to_tensor = NumpyToTensor()
sample, metadata = numpy_to_tensor(sample, metadata)
return sample, metadata
[docs]class UndoCompose(object):
"""Undo the Compose transformations.
Call the undo transformations in the inverse order than the "do transformations".
Attributes:
compose (torchvision_transforms.Compose):
Args:
transforms (torchvision_transforms.Compose):
"""
[docs] def __init__(self, compose):
self.transforms = compose
[docs] def __call__(self, sample, metadata, data_type='gt'):
if self.transforms.transform[data_type] is None:
# In case self.transforms.transform[data_type] is None
return None, None
else:
numpy_to_tensor = NumpyToTensor()
sample, metadata = numpy_to_tensor.undo_transform(sample, metadata)
for tr in self.transforms.transform[data_type].transforms[::-1]:
sample, metadata = tr.undo_transform(sample, metadata)
return sample, metadata
[docs]class NumpyToTensor(ImedTransform):
"""Converts nd array to tensor object."""
[docs] def __call__(self, sample, metadata=None):
"""Converts nd array to Tensor."""
sample = np.array(sample)
# Use np.ascontiguousarray to avoid axes permutations issues
arr_contig = np.ascontiguousarray(sample, dtype=sample.dtype)
return torch.from_numpy(arr_contig), metadata
[docs]class Resample(ImedTransform):
"""
Resample image to a given resolution.
Args:
hspace (float): Resolution along the first axis, in mm.
wspace (float): Resolution along the second axis, in mm.
dspace (float): Resolution along the third axis, in mm.
interpolation_order (int): Order of spline interpolation. Set to 0 for label data. Default=2.
"""
[docs] def __init__(self, hspace, wspace, dspace=1.):
self.hspace = hspace
self.wspace = wspace
self.dspace = dspace
[docs] @multichannel_capable
@multichannel_capable # for multiple raters during training/preprocessing
@two_dim_compatible
def __call__(self, sample, metadata=None):
"""Resample to a given resolution, in millimeters."""
# Get params
# Voxel dimension in mm
is_2d = sample.shape[-1] == 1
metadata[MetadataKW.PRE_RESAMPLE_SHAPE] = sample.shape
# metadata is not a dictionary!
zooms = list(metadata[MetadataKW.ZOOMS])
if len(zooms) == 2:
zooms += [1.0]
hfactor = zooms[0] / self.hspace
wfactor = zooms[1] / self.wspace
dfactor = zooms[2] / self.dspace
params_resample = (hfactor, wfactor, dfactor) if not is_2d else (hfactor, wfactor, 1.0)
# Run resampling
data_out = zoom(sample,
zoom=params_resample,
order=1 if metadata[MetadataKW.DATA_TYPE] == 'gt' else 2)
# Data type
data_out = data_out.astype(sample.dtype)
return data_out, metadata
[docs]class NormalizeInstance(ImedTransform):
"""Normalize a tensor or an array image with mean and standard deviation estimated from the sample itself."""
@multichannel_capable
def undo_transform(self, sample, metadata=None):
# Nothing
return sample, metadata
[docs] @multichannel_capable
def __call__(self, sample, metadata=None):
# if sample uniform: do mean-subtraction
if sample.std() < 1e-5:
data_out = (sample - sample.mean())
# else: normalize sample
else:
data_out = (sample - sample.mean()) / sample.std()
return data_out, metadata
[docs]class CroppableArray(np.ndarray):
"""Zero padding slice past end of array in numpy.
Adapted From: https://stackoverflow.com/a/41155020/13306686
"""
[docs] def __getitem__(self, item):
all_in_slices = []
pad = []
for dim in range(self.ndim):
# If the slice has no length then it's a single argument.
# If it's just an integer then we just return, this is
# needed for the representation to work properly
# If it's not then create a list containing None-slices
# for dim>=1 and continue down the loop
try:
len(item)
except TypeError:
if isinstance(item, int):
return super().__getitem__(item)
newitem = [slice(None)] * self.ndim
newitem[0] = item
item = newitem
# We're out of items, just append noop slices
if dim >= len(item):
all_in_slices.append(slice(0, self.shape[dim]))
pad.append((0, 0))
# We're dealing with an integer (no padding even if it's
# out of bounds)
if isinstance(item[dim], int):
all_in_slices.append(slice(item[dim], item[dim] + 1))
pad.append((0, 0))
# Dealing with a slice, here it get's complicated, we need
# to correctly deal with None start/stop as well as with
# out-of-bound values and correct padding
elif isinstance(item[dim], slice):
# Placeholders for values
start, stop = 0, self.shape[dim]
this_pad = [0, 0]
if item[dim].start is None:
start = 0
else:
if item[dim].start < 0:
this_pad[0] = -item[dim].start
start = 0
else:
start = item[dim].start
if item[dim].stop is None:
stop = self.shape[dim]
else:
if item[dim].stop > self.shape[dim]:
this_pad[1] = item[dim].stop - self.shape[dim]
stop = self.shape[dim]
else:
stop = item[dim].stop
all_in_slices.append(slice(start, stop))
pad.append(tuple(this_pad))
# Let numpy deal with slicing
ret = super().__getitem__(tuple(all_in_slices))
# and padding
ret = np.pad(ret, tuple(pad), mode='constant', constant_values=0)
return ret
[docs]class Crop(ImedTransform):
"""Crop data.
Args:
size (tuple of int): Size of the output sample. Tuple of size 2 if dealing with 2D samples, 3 with 3D samples.
Attributes:
size (tuple of int): Size of the output sample. Tuple of size 3.
"""
[docs] def __init__(self, size):
self.size = size if len(size) == 3 else size + [0]
@staticmethod
def _adjust_padding(npad, sample):
npad_out_tuple = []
for idx_dim, tuple_pad in enumerate(npad):
pad_start, pad_end = tuple_pad
if pad_start < 0 or pad_end < 0:
# Move axis of interest
sample_reorient = np.swapaxes(sample, 0, idx_dim)
# Adjust pad and crop
if pad_start < 0 and pad_end < 0:
sample_crop = sample_reorient[abs(pad_start):pad_end, ]
pad_end, pad_start = 0, 0
elif pad_start < 0:
sample_crop = sample_reorient[abs(pad_start):, ]
pad_start = 0
else: # i.e. pad_end < 0:
sample_crop = sample_reorient[:pad_end, ]
pad_end = 0
# Reorient
sample = np.swapaxes(sample_crop, 0, idx_dim)
npad_out_tuple.append((pad_start, pad_end))
return npad_out_tuple, sample
[docs] @multichannel_capable
@multichannel_capable # for multiple raters during training/preprocessing
def __call__(self, sample, metadata):
# Get params
is_2d = sample.shape[-1] == 1
th, tw, td = self.size
fh, fw, fd, h, w, d = metadata[MetadataKW.CROP_PARAMS].get(self.__class__.__name__)
# Crop data
# Note we use here CroppableArray in order to deal with "out of boundaries" crop
# e.g. if fh is negative or fh+th out of bounds, then it will pad
if is_2d:
data_out = sample.view(CroppableArray)[fh:fh + th, fw:fw + tw, :]
else:
data_out = sample.view(CroppableArray)[fh:fh + th, fw:fw + tw, fd:fd + td]
return data_out, metadata
@multichannel_capable
@two_dim_compatible
def undo_transform(self, sample, metadata=None):
# Get crop params
is_2d = sample.shape[-1] == 1
th, tw, td = self.size
fh, fw, fd, h, w, d = metadata[MetadataKW.CROP_PARAMS].get(self.__class__.__name__)
# Compute params to undo transform
pad_left = fw
pad_right = w - pad_left - tw
pad_top = fh
pad_bottom = h - pad_top - th
pad_front = fd if not is_2d else 0
pad_back = d - pad_front - td if not is_2d else 0
npad = [(pad_top, pad_bottom), (pad_left, pad_right), (pad_front, pad_back)]
# Check and adjust npad if needed, i.e. if crop out of boundaries
npad_adj, sample_adj = self._adjust_padding(npad, sample.copy())
# Apply padding
data_out = np.pad(sample_adj,
npad_adj,
mode='constant',
constant_values=0).astype(sample.dtype)
return data_out, metadata
[docs]class CenterCrop(Crop):
"""Make a centered crop of a specified size."""
[docs] @multichannel_capable
@multichannel_capable # for multiple raters during training/preprocessing
@two_dim_compatible
def __call__(self, sample, metadata=None):
# Crop parameters
th, tw, td = self.size
h, w, d = sample.shape
fh = int(round((h - th) / 2.))
fw = int(round((w - tw) / 2.))
fd = int(round((d - td) / 2.))
params = (fh, fw, fd, h, w, d)
metadata[MetadataKW.CROP_PARAMS][self.__class__.__name__] = params
# Call base method
return super().__call__(sample, metadata)
[docs]class ROICrop(Crop):
"""Make a crop of a specified size around a Region of Interest (ROI)."""
[docs] @multichannel_capable
@multichannel_capable # for multiple raters during training/preprocessing
@two_dim_compatible
def __call__(self, sample, metadata=None):
# If crop_params are not in metadata,
# then we are here dealing with ROI data to determine crop params
if self.__class__.__name__ not in metadata[MetadataKW.CROP_PARAMS]:
# Compute center of mass of the ROI
h_roi, w_roi, d_roi = center_of_mass(sample.astype(int))
h_roi, w_roi, d_roi = int(round(h_roi)), int(round(w_roi)), int(round(d_roi))
th, tw, td = self.size
th_half, tw_half, td_half = int(round(th / 2.)), int(round(tw / 2.)), int(round(td / 2.))
# compute top left corner of the crop area
fh = h_roi - th_half
fw = w_roi - tw_half
fd = d_roi - td_half
# Crop params
h, w, d = sample.shape
params = (fh, fw, fd, h, w, d)
metadata[MetadataKW.CROP_PARAMS][self.__class__.__name__] = params
# Call base method
return super().__call__(sample, metadata)
[docs]class DilateGT(ImedTransform):
"""Randomly dilate a ground-truth tensor.
.. image:: https://raw.githubusercontent.com/ivadomed/doc-figures/main/technical_features/dilate-gt.png
:width: 500px
:align: center
Args:
dilation_factor (float): Controls the number of dilation iterations. For each individual lesion, the number of
dilation iterations is computed as follows:
nb_it = int(round(dilation_factor * sqrt(lesion_area)))
If dilation_factor <= 0, then no dilation will be performed.
"""
[docs] def __init__(self, dilation_factor):
self.dil_factor = dilation_factor
@staticmethod
def dilate_lesion(arr_bin, arr_soft, label_values):
for lb in label_values:
# binary dilation with 1 iteration
arr_dilated = binary_dilation(arr_bin, iterations=1)
# isolate new voxels, i.e. the ones from the dilation
new_voxels = np.logical_xor(arr_dilated, arr_bin).astype(int)
# assign a soft value (]0, 1[) to the new voxels
soft_new_voxels = lb * new_voxels
# add the new voxels to the input mask
arr_soft += soft_new_voxels
arr_bin = (arr_soft > 0).astype(int)
return arr_bin, arr_soft
def dilate_arr(self, arr, dil_factor):
# identify each object
arr_labeled, lb_nb = label(arr.astype(int))
# loop across each object
arr_bin_lst, arr_soft_lst = [], []
for obj_idx in range(1, lb_nb + 1):
arr_bin_obj = (arr_labeled == obj_idx).astype(int)
arr_soft_obj = np.copy(arr_bin_obj).astype(float)
# compute the number of dilation iterations depending on the size of the lesion
nb_it = int(round(dil_factor * math.sqrt(arr_bin_obj.sum())))
# values of the voxels added to the input mask
soft_label_values = [x / (nb_it + 1) for x in range(nb_it, 0, -1)]
# dilate lesion
arr_bin_dil, arr_soft_dil = self.dilate_lesion(arr_bin_obj, arr_soft_obj, soft_label_values)
arr_bin_lst.append(arr_bin_dil)
arr_soft_lst.append(arr_soft_dil)
# sum dilated objects
arr_bin_idx = np.sum(np.array(arr_bin_lst), axis=0)
arr_soft_idx = np.sum(np.array(arr_soft_lst), axis=0)
# clip values in case dilated voxels overlap
arr_bin_clip, arr_soft_clip = np.clip(arr_bin_idx, 0, 1), np.clip(arr_soft_idx, 0.0, 1.0)
return arr_soft_clip.astype(float), arr_bin_clip.astype(int)
@staticmethod
def random_holes(arr_in, arr_soft, arr_bin):
arr_soft_out = np.copy(arr_soft)
# coordinates of the new voxels, i.e. the ones from the dilation
new_voxels_xx, new_voxels_yy, new_voxels_zz = np.where(np.logical_xor(arr_bin, arr_in))
nb_new_voxels = new_voxels_xx.shape[0]
# ratio of voxels added to the input mask from the dilated mask
new_voxel_ratio = random.random()
# randomly select new voxel indexes to remove
idx_to_remove = random.sample(range(nb_new_voxels),
int(round(nb_new_voxels * (1 - new_voxel_ratio))))
# set to zero the here-above randomly selected new voxels
arr_soft_out[new_voxels_xx[idx_to_remove],
new_voxels_yy[idx_to_remove],
new_voxels_zz[idx_to_remove]] = 0.0
arr_bin_out = (arr_soft_out > 0).astype(int)
return arr_soft_out, arr_bin_out
@staticmethod
def post_processing(arr_in, arr_soft, arr_bin, arr_dil):
# remove new object that are not connected to the input mask
arr_labeled, lb_nb = label(arr_bin)
connected_to_in = arr_labeled * arr_in
for lb in range(1, lb_nb + 1):
if np.sum(connected_to_in == lb) == 0:
arr_soft[arr_labeled == lb] = 0
struct = np.ones((3, 3, 1) if arr_soft.shape[2] == 1 else (3, 3, 3))
# binary closing
arr_bin_closed = binary_closing((arr_soft > 0).astype(int), structure=struct)
# fill binary holes
arr_bin_filled = binary_fill_holes(arr_bin_closed)
# recover the soft-value assigned to the filled-holes
arr_soft_out = arr_bin_filled * arr_dil
return arr_soft_out
[docs] @multichannel_capable
@two_dim_compatible
def __call__(self, sample, metadata=None):
# binarize for processing
gt_data_np = (sample > 0.5).astype(np.int_)
if self.dil_factor > 0 and np.sum(sample):
# dilation
gt_dil, gt_dil_bin = self.dilate_arr(gt_data_np, self.dil_factor)
# random holes in dilated area
# gt_holes, gt_holes_bin = self.random_holes(gt_data_np, gt_dil, gt_dil_bin)
# post-processing
# gt_pp = self.post_processing(gt_data_np, gt_holes, gt_holes_bin, gt_dil)
# return gt_pp.astype(np.float32), metadata
return gt_dil.astype(np.float32), metadata
else:
return sample, metadata
[docs]class BoundingBoxCrop(Crop):
"""Crops image according to given bounding box."""
[docs] @multichannel_capable
@two_dim_compatible
def __call__(self, sample, metadata):
assert MetadataKW.BOUNDING_BOX in metadata
x_min, x_max, y_min, y_max, z_min, z_max = metadata[MetadataKW.BOUNDING_BOX]
x, y, z = sample.shape
metadata[MetadataKW.CROP_PARAMS][self.__class__.__name__] = (x_min, y_min, z_min, x, y, z)
# Call base method
return super().__call__(sample, metadata)
[docs]class RandomAffine(ImedTransform):
"""Apply Random Affine transformation.
Args:
degrees (float): Positive float or list (or tuple) of length two. Angles in degrees. If only a float is
provided, then rotation angle is selected within the range [-degrees, degrees]. Otherwise, the list / tuple
defines this range.
translate (list of float): List of floats between 0 and 1, of length 2 or 3 depending on the sample shape (2D
or 3D). These floats defines the maximum range of translation along each axis.
scale (list of float): List of floats between 0 and 1, of length 2 or 3 depending on the sample shape (2D
or 3D). These floats defines the maximum range of scaling along each axis.
Attributes:
degrees (tuple of floats):
translate (list of float):
scale (list of float):
"""
[docs] def __init__(self, degrees=0, translate=None, scale=None):
# Rotation
if isinstance(degrees, numbers.Number):
if degrees < 0:
raise ValueError("If degrees is a single number, it must be positive.")
self.degrees = (-degrees, degrees)
else:
assert isinstance(degrees, (tuple, list)) and len(degrees) == 2, \
"degrees should be a list or tuple and it must be of length 2."
self.degrees = degrees
# Scale
if scale is not None:
assert isinstance(scale, (tuple, list)) and (len(scale) == 2 or len(scale) == 3), \
"scale should be a list or tuple and it must be of length 2 or 3."
for s in scale:
if not (0.0 <= s <= 1.0):
raise ValueError("scale values should be between 0 and 1")
if len(scale) == 2:
scale.append(0.0)
self.scale = scale
else:
self.scale = [0., 0., 0.]
# Translation
if translate is not None:
assert isinstance(translate, (tuple, list)) and (len(translate) == 2 or len(translate) == 3), \
"translate should be a list or tuple and it must be of length 2 or 3."
for t in translate:
if not (0.0 <= t <= 1.0):
raise ValueError("translation values should be between 0 and 1")
if len(translate) == 2:
translate.append(0.0)
self.translate = translate
[docs] @multichannel_capable
@two_dim_compatible
def __call__(self, sample, metadata=None):
# Rotation
# If angle and metadata have been already defined for this sample, then use them
if MetadataKW.ROTATION in metadata:
angle, axes = metadata[MetadataKW.ROTATION]
# Otherwise, get random ones
else:
# Get the random angle
angle = math.radians(np.random.uniform(self.degrees[0], self.degrees[1]))
# Get the two axes that define the plane of rotation
axes = list(random.sample(range(3 if sample.shape[2] > 1 else 2), 2))
axes.sort()
# Save params
metadata[MetadataKW.ROTATION] = [angle, axes]
# Scale
if MetadataKW.SCALE in metadata:
scale_x, scale_y, scale_z = metadata[MetadataKW.SCALE]
else:
scale_x = random.uniform(1 - self.scale[0], 1 + self.scale[0])
scale_y = random.uniform(1 - self.scale[1], 1 + self.scale[1])
scale_z = random.uniform(1 - self.scale[2], 1 + self.scale[2])
metadata[MetadataKW.SCALE] = [scale_x, scale_y, scale_z]
# Get params
if MetadataKW.TRANSLATION in metadata:
translations = metadata[MetadataKW.TRANSLATION]
else:
self.data_shape = sample.shape
if self.translate is not None:
max_dx = self.translate[0] * self.data_shape[0]
max_dy = self.translate[1] * self.data_shape[1]
max_dz = self.translate[2] * self.data_shape[2]
translations = (np.round(np.random.uniform(-max_dx, max_dx)),
np.round(np.random.uniform(-max_dy, max_dy)),
np.round(np.random.uniform(-max_dz, max_dz)))
else:
translations = (0, 0, 0)
metadata[MetadataKW.TRANSLATION] = translations
# Do rotation
shape = 0.5 * np.array(sample.shape)
if axes == [0, 1]:
rotate = np.array([[math.cos(angle), -math.sin(angle), 0],
[math.sin(angle), math.cos(angle), 0],
[0, 0, 1]])
elif axes == [0, 2]:
rotate = np.array([[math.cos(angle), 0, math.sin(angle)],
[0, 1, 0],
[-math.sin(angle), 0, math.cos(angle)]])
elif axes == [1, 2]:
rotate = np.array([[1, 0, 0],
[0, math.cos(angle), -math.sin(angle)],
[0, math.sin(angle), math.cos(angle)]])
else:
raise ValueError("Unknown axes value")
scale = np.array([[1 / scale_x, 0, 0], [0, 1 / scale_y, 0], [0, 0, 1 / scale_z]])
if MetadataKW.UNDO in metadata and metadata[MetadataKW.UNDO]:
transforms = scale.dot(rotate)
else:
transforms = rotate.dot(scale)
offset = shape - shape.dot(transforms) + translations
data_out = affine_transform(sample, transforms.T, order=1, offset=offset,
output_shape=sample.shape).astype(sample.dtype)
return data_out, metadata
@multichannel_capable
@two_dim_compatible
def undo_transform(self, sample, metadata=None):
assert MetadataKW.ROTATION in metadata
assert MetadataKW.SCALE in metadata
assert MetadataKW.TRANSLATION in metadata
# Opposite rotation, same axes
angle, axes = - metadata[MetadataKW.ROTATION][0], metadata[MetadataKW.ROTATION][1]
scale = 1 / np.array(metadata[MetadataKW.SCALE])
translation = - np.array(metadata[MetadataKW.TRANSLATION])
# Undo rotation
dict_params = {MetadataKW.ROTATION: [angle, axes], MetadataKW.SCALE: scale,
MetadataKW.TRANSLATION: [0, 0, 0], MetadataKW.UNDO: True}
data_out, _ = self.__call__(sample, dict_params)
data_out = affine_transform(data_out, np.identity(3), order=1, offset=translation,
output_shape=sample.shape).astype(sample.dtype)
return data_out, metadata
[docs]class RandomReverse(ImedTransform):
"""Make a randomized symmetric inversion of the different values of each dimensions."""
[docs] @multichannel_capable
@two_dim_compatible
def __call__(self, sample, metadata=None):
if MetadataKW.REVERSE in metadata:
flip_axes = metadata[MetadataKW.REVERSE]
else:
# Flip axis booleans
flip_axes = [np.random.randint(2) == 1 for _ in [0, 1, 2]]
# Save in metadata
metadata[MetadataKW.REVERSE] = flip_axes
# Run flip
for idx_axis, flip_bool in enumerate(flip_axes):
if flip_bool:
sample = np.flip(sample, axis=idx_axis).copy()
return sample, metadata
@multichannel_capable
@two_dim_compatible
def undo_transform(self, sample, metadata=None):
assert MetadataKW.REVERSE in metadata
return self.__call__(sample, metadata)
[docs]class RandomShiftIntensity(ImedTransform):
"""Add a random intensity offset.
Args:
shift_range (tuple of floats): Tuple of length two. Specifies the range where the offset that is applied is
randomly selected from.
prob (float): Between 0 and 1. Probability of occurence of this transformation.
"""
[docs] def __init__(self, shift_range, prob=0.1):
self.shift_range = shift_range
self.prob = prob
[docs] @multichannel_capable
def __call__(self, sample, metadata=None):
if np.random.random() < self.prob:
# Get random offset
offset = np.random.uniform(self.shift_range[0], self.shift_range[1])
else:
offset = 0.0
# Update metadata
metadata[MetadataKW.OFFSET] = offset
# Shift intensity
data = (sample + offset).astype(sample.dtype)
return data, metadata
@multichannel_capable
def undo_transform(self, sample, metadata=None):
assert MetadataKW.OFFSET in metadata
# Get offset
offset = metadata[MetadataKW.OFFSET]
# Substract offset
data = (sample - offset).astype(sample.dtype)
return data, metadata
[docs]class AdditiveGaussianNoise(ImedTransform):
"""Adds Gaussian Noise to images.
Args:
mean (float): Gaussian noise mean.
std (float): Gaussian noise standard deviation.
"""
[docs] def __init__(self, mean=0.0, std=0.01):
self.mean = mean
self.std = std
[docs] @multichannel_capable
def __call__(self, sample, metadata=None):
if MetadataKW.GAUSSIAN_NOISE in metadata:
noise = metadata[MetadataKW.GAUSSIAN_NOISE]
else:
# Get random noise
noise = np.random.normal(self.mean, self.std, sample.shape)
noise = noise.astype(np.float32)
# Apply noise
data_out = sample + noise
return data_out.astype(sample.dtype), metadata
[docs]class Clahe(ImedTransform):
""" Applies Contrast Limited Adaptive Histogram Equalization for enhancing the local image contrast.
.. seealso::
Zuiderveld, Karel. "Contrast limited adaptive histogram equalization." Graphics gems (1994): 474-485.
Default values are based on:
.. seealso::
Zheng, Qiao, et al. "3-D consistent and robust segmentation of cardiac images by deep learning with spatial
propagation." IEEE transactions on medical imaging 37.9 (2018): 2137-2148.
Args:
clip_limit (float): Clipping limit, normalized between 0 and 1.
kernel_size (tuple of int): Defines the shape of contextual regions used in the algorithm. Length equals image
dimension (ie 2 or 3 for 2D or 3D, respectively).
"""
[docs] def __init__(self, clip_limit=3.0, kernel_size=(8, 8)):
self.clip_limit = clip_limit
self.kernel_size = kernel_size
[docs] @multichannel_capable
def __call__(self, sample, metadata=None):
assert len(self.kernel_size) == len(sample.shape)
# Run equalization
data_out = equalize_adapthist(sample,
kernel_size=self.kernel_size,
clip_limit=self.clip_limit).astype(sample.dtype)
return data_out, metadata
[docs]class HistogramClipping(ImedTransform):
"""Performs intensity clipping based on percentiles.
Args:
min_percentile (float): Between 0 and 100. Lower clipping limit.
max_percentile (float): Between 0 and 100. Higher clipping limit.
"""
[docs] def __init__(self, min_percentile=5.0, max_percentile=95.0):
self.min_percentile = min_percentile
self.max_percentile = max_percentile
[docs] @multichannel_capable
def __call__(self, sample, metadata=None):
data = np.copy(sample)
# Run clipping
percentile1 = np.percentile(sample, self.min_percentile)
percentile2 = np.percentile(sample, self.max_percentile)
data[sample <= percentile1] = percentile1
data[sample >= percentile2] = percentile2
return data, metadata
[docs]class RandomGamma(ImedTransform):
"""Randomly changes the contrast of an image by gamma exponential
Args:
log_gamma_range (tuple of floats): Log gamma range for changing contrast. Length equals 2.
p (float): Probability of performing the gamma contrast
"""
[docs] def __init__(self, log_gamma_range, p=0.5):
self.log_gamma_range = log_gamma_range
self.p = p
[docs] @multichannel_capable
@two_dim_compatible
def __call__(self, sample, metadata=None):
if np.random.random() < self.p:
# Get params
gamma = np.exp(np.random.uniform(self.log_gamma_range[0], self.log_gamma_range[1]))
# Save params
metadata[MetadataKW.GAMMA] = [gamma]
else:
metadata[MetadataKW.GAMMA] = [None]
if any(metadata[MetadataKW.GAMMA]):
# Suppress the overflow case (due to exponentiation)
with np.errstate(over='ignore'):
# Apply gamma contrast
data_out = np.sign(sample) * (np.abs(sample) ** gamma)
# Keep data type
data_out = data_out.astype(sample.dtype)
# Clip +/- inf values to the max/min quantization of the native dtype
data_out = np.nan_to_num(data_out)
return data_out, metadata
else:
return sample, metadata
[docs]class RandomBiasField(ImedTransform):
"""Applies a random MRI bias field artifact to the image via torchio.RandomBiasField()
Args:
coefficients (float): Maximum magnitude of polynomial coefficients
order: Order of the basis polynomial functions
p (float): Probability of applying the bias field
"""
[docs] def __init__(self, coefficients, order, p=0.5):
self.coefficients = coefficients
self.order = order
self.p = p
[docs] @multichannel_capable
@two_dim_compatible
def __call__(self, sample, metadata=None):
if np.random.random() < self.p:
# Get params
random_bias_field = tio.Compose([tio.RandomBiasField(coefficients=self.coefficients,
order=self.order,
p=self.p)])
# Save params
metadata[MetadataKW.BIAS_FIELD] = [random_bias_field]
else:
metadata[MetadataKW.BIAS_FIELD] = [None]
if any(metadata[MetadataKW.BIAS_FIELD]):
# Apply random bias field
data_out, history = tio_transform(x=sample, transform=random_bias_field)
# Keep data type
data_out = data_out.astype(sample.dtype)
# Update metadata to history
metadata[MetadataKW.BIAS_FIELD] = [history]
return data_out, metadata
else:
return sample, metadata
[docs]class RandomBlur(ImedTransform):
"""Applies a random blur to the image
Args:
sigma_range (tuple of floats): Standard deviation range for the gaussian filter
p (float): Probability of performing blur
"""
[docs] def __init__(self, sigma_range, p=0.5):
self.sigma_range = sigma_range
self.p = p
[docs] @multichannel_capable
@two_dim_compatible
def __call__(self, sample, metadata=None):
if np.random.random() < self.p:
# Get params
sigma = np.random.uniform(self.sigma_range[0], self.sigma_range[1])
# Save params
metadata[MetadataKW.BLUR] = [sigma]
else:
metadata[MetadataKW.BLUR] = [None]
if any(metadata[MetadataKW.BLUR]):
# Apply random blur
data_out = gaussian_filter(sample, sigma)
# Keep data type
data_out = data_out.astype(sample.dtype)
return data_out, metadata
else:
return sample, metadata